Syllabus
Syllabus
Quizzes
Tests
Final Exam Schedule
Will be held on Monday, December 18, 2017 at regular class time in our regular classroom.
Homework (not collected)
- 2.2: 7, 9, 22, 34
- 2.3: 7, 19, 21, 25, 27, 36, 39, 41, 47
- 2.4: 11, 13, 17-27 odd, 33
- 2.5: 9-23odd
- 2.6: 9-19 odd
- 3.1: 6, 7, 9, 20, 30,31, 53, 57
- 3.2: 5, 10, 11, 15, 21, 25
- 3.3: 7, 9, 11, 14, 16, 18, 24, 25, 28, 33, 37
- 3.4: 7, 8, 12, 23, 27, 47, 49
- 3.5: 7-13 odd, 17-27 odd, 33-45 odd
- 3.6: 11, 17, 18
- 3.7: 7-33 odd, 45-51odd, 80
- 3.8: 5, 9, 13, 14, 17, 25
- 3.9: 9, 13, 14, 19, 21, 23, 45, 46, 47
- 3.10: 7, 9, 11, 13, 15, 19, 25, 31
- 3.11: 5, 11, 16, 17, 23, 27
- 4.1: 15, 23, 27, 33, 47, 51, 76
- 4.2: 27, 29, 39, 41, 57, 71, 73
- 4.3: 9, 13, 15, 17, 50
- 4.4: 14, 21, 27, 28
- 4.5: 54, 55, 56
- 4.6: 17-23 odd
- 4.7:
- $\lim_{x \to 3} \frac{x^2-2x+9}{x^2-9}$
- $\lim_{x \to 1} \frac{x-1}{\sqrt{x} -1}$
- $\lim_{x \to \pi} \frac{\sin(x)}{x-\pi}$
- $\lim_{x \to 0} \frac{4\sin(5x)}{3x}$
- $\lim_{x \to 0} \frac{\sin(x)-x+\frac{1}{3}x^3}{x^5}$
- $\lim_{x \to \infty} \frac{x^3+1}{e^x}$
- $\lim_{x \to \infty} \frac{3x+\sqrt{x}+1}{x}$
- $\lim_{x \to 0} \frac{\tan(x)}{x}$
- $\lim_{x \to 0} x^x$
- $\lim_{x \to 0} (1+3x)^\frac{1}{x}$
- $\lim_{x \to 0} (1-3x)^\frac{1}{x}$
- $\lim_{x \to 0} (1-3x^3)^\frac{1}{x^2}$
- $\lim_{x \to 0} (1+\sin(x))^\frac{1}{x}$
- 4.9: 11-33 odd
- $\int 3\cos(x) -2\csc(x) +e^x - 2x \, dx$
- $ \int 2\sec(x)\tan(x) + \frac{3x^2-1}{x} \, dx$
- $ \int \frac{1}{\sqrt{1-x^2}} \, dx$
- $ \int 3e^x - 2x^2 + \cos(x) + \frac{1}{\sqrt{1-x^2}} \, dx$
- $ \int \frac{6}{x\sqrt{x^2-1}} + \frac{8}{\sqrt{1+x^2}} \, dx$
- $ \int x^\pi + e^\pi \, dx$
- 5.5: Substitution Rule
- $\int \sin(3x) \, dx$
- $\int e^{5x+1} \, dx$
- $\int \sec^2(4x) \, dx$
- $\int \frac{1}{3x+1} \, dx$
- $\int \tan(x) \, dx$. Hint $\tan(x) = \frac{\sin(x)}{\cos(x)}$
- $\int x\sin(3x^2+1) \, dx$
- $\int x\sqrt{x^2+14} \, dx$
- $\int (2x1)+\sqrt{x^2+x+3} \, dx$
- $\int x^2\sqrt{1-4x^3} \, dx$
- $\int \sin(4x)\cos(4x) \, dx$
- $\int \sin(4x)\cos^2(4x) \, dx$
- $\int \sec(4x)\tan(4x) \, dx$
- $\int \tan(4x) \, dx$
- $\int \frac{e^x}{1+e^x} \, dx$
- $ \int \frac{e^x}{1+e^{2x}} \, dx $
Tentative Schedule
- 9/4 to 9/6: 2.1, 2.2 , 2.3 Limits
- 9/11 to 9/13: 2.3, 2.4 Infinite Limits, 2.5 Limits at infinity,
- 9/18 to 9/20: 2.6 Continuity, 3.1 The Derivative, 3.2 Working with derivatives,
- 9/25 to 9/27: 3.3 Rules of Differentiation, 3.4 The Product and Quotient Rules, 3.5 Derivatives of Trigonometric Functions
- 10/2 to 10/4: 3.6 Derivatives as Rates of Change & 3.7 The Chain Rule, 3.8 Implicit Differentiation,
- 10/9 to 10/11: , 3.9 Derivatives of Logarithmic and Exponential Functions, 3.10 Derivatives of Inverse Trigonometric Functions
- 10/16 to 10/18: 3.11 Related Rates, Review,
- 10/23 to 10/25: Test 1
- 10/30 to 11/1: 4.1 Maxima and Minima, 4.2 What Derivatives Tell Us, 4.3 Graphing Functions
- 11/6 to 11/8: 4.4 Optimization Problems, 4.5 Linear Approximation and Differentials,
- 11/13 to 11/15: 4.6 Mean Value Theorem, 4.7 L’Hôpital’s Rule,
- 11/20 to 11/22: 4.9 Antiderivatives, 5.5 Substitution Rule, Fall Break
- 11/27 to 11/29: Review, Test 2
- 12/4 to 12/6: 5.1 Approximating Areas Under Curves, 5.2 Definite Integrals,
- 12/11 to 12/13: 5.3 Fundamental Theorem of Calculus, Review,
- 12/18: Final Exam