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Abstract

The brachistochrone is a classic geometric shape that is the path of shortest time for a free rolling marble from
one point to another. Here we examine a construction of that path using some Calculus techniques and Snell’s
law.

Keywords: Brachistochrone, Calculus of Variations, Snell’s Law

1 A Brachistochrone

What is the shortest distance between two points?
Yes a straight line, but what is the shortest time
between two points A and B where we build a path
for a marble to roll from point A to point B starting
with initial velocity of zero and only under the force
of gravity.

So the marble will be moving very slowly early
on in its trip. However, the marble will go faster
and faster as rolls down the path. So which path
seems like it might have the marble arrive first?

• path 1 - It does not seem like it is the fastest
since the marble spends a lot of time going
slow.

• path 2 - It could be the quickest path since it
is the shortest distance.

• path 3 - It could be the quickest path. It is
longer than path 2 but on this path the marble
is going very fast right away and has a higher
average speed than the marble on path 2.

A

B

path 1

path 2

path 3

path 4

Fig. 1: I have drawn four paths from point A to
point B. Notice path 2 is the straight line
from point A to point B. Which path seems
like it could be the quickest time?

• path 4 - This one could be the fastest too for
a similar reasoning as for path 3.

Before we can answer this question we should
know just how fast is the marble moving. Recall
the acceleration due to gravity is a(t) = −9.8m/s2,
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that the velocity is v(t) = −9.8tm/s and that the
height (position) of the marble is given by y(t) =
−4.9t2m. So solving the velocity and position equa-
tions for t yields

t =
v

−9.8
and t =

√
y

−4.9
.

So
v

−9.8
=

√
y

−4.9
.

Thus

v = −9.8

√
s

−4.9
=
√

19.6y ≈ 4.427
√
s. (1)

Say v =
√
y k where k is the constant 4.427 (no-

tice I’ve already dropped the units). So when the
ball is

• 1 meter below its initial position v =
√

1k =
1k

• 2 meter its initial position v =
√

2k ≈= 1.4k

• 3 meter its initial position v =
√

3 ≈= 1.7k

• 4 meter its initial position v =
√

4 = 2k

• 5 meter its initial position v =
√

5 ≈= 2.2k

v = 1

v = 1.4

v = 1.7

v = 2

v = 2.2

A

B

path 3

Fig. 2: As the marble rolls down the path we can
see it is rolling at 2.2 k which is much faster
than near the top.

2 Euler-Lagrange Differential Equation

Our goal is to find the path that minimizes time.
Sounds like a Calculus of variations problem to me!
To maximize the functional

I(y) =

∫ b

a

f(x, y, y′)dx

we recall the Euler-Lagrange formula

∂f

∂y
=

d

dx

∂f

∂y′
.

And its simplification, Beltrami’s formula

y′
∂f

∂y′
− f = c

where c is a constant.
Don’t you remember this formula! Don’t re-

member your calculus of variations either! 1 Well
we need to do something else then.

3 Dogs

I have a dog named Bella and she enjoys fetching
the stick. So it is another path problem. When I
throw the stick to her she doesn’t just run a straight
path to the stick, she minimizes the the time of her
path. Sounds close enough to what we were doing.
So let’s talk about Bella fetching the stick.

When I throw the stick to her on flat land she
runs straight at the stick. But when I throw the
stick to her at the edge of a lake she makes a turn.
She travels a straight line on the land where she
runs fast and then makes turn as she hits the water
(she swims much slower than she runs).

Bella’s path

land water

Fig. 3: She runs about 6 meters per second and
swims about 3 meters per second. So she
angles a bit to remain at her fast speed on
land before swimming after the stick.

Bella knows calculus [Pennings(2003)]. She can
minimize the time. How does she do it? Let’s cal-
culate it the way Bella does. We know D = RT .
That is distance equals rate times time.

So we have (see Figure 3)

D1 = R1T1

D1 = 6T1√
x2 + 102 = 6T1

D2 = R2T2

D2 = 3T2√
(20− x)2 + 102 = 3T2

Thus

T1 =

√
x2 + 102

6

1 If you do know something about PDE’s and calculus of
variations we will solve in the Section 6.1.
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D1 =
√

102 + x2

10

x

10

20− x

D2 =
√

(20− x)2 + 102

Fig. 4: We use the Pythagorean Theorem to obtain
the equations for D1 and D2.

and

T2 =

√
(20− x)2 + 102

3
.

When Bella tries to minimize the time traveled
she minimizes the equation

T = T1 + T2 =

√
x2 + 102

6
+

√
(20− x)2 + 102

3

We have two techniques to minimize functions,
we could graph and estimate the minimum point
from the graph or we could use Calculus. Let’s go
through both below.

3.1 Graph and Estimate Minimum

We graphed the function T (x) see Figure 5 and the
minimum appears to be at about x = 15.383 meters.

From the figure we see that Bella should aim at
a point at about where x ≈ 15.383 meters.

3.2 Use Calculus to compute the
Minimum

To use Calculus we want to minimize the function

T (x) =

√
x2 + 102

6
+

√
(20− x)2 + 102

3
.

First we take the derivative and set it equal to zero
to get

T ′(x) =
x

6
√
x2 + 102

− 20− x
3
√

(20− x)2 + 102
= 0.

f(x) =
√
x2+100

6 +

√
(20−x)2+100

3

(15.383, 6.729)
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Fig. 5: Here we graph the function T (x). We see
that the minimum T occurs when x ≈
15.383 and the minimum time is about 6.729
seconds.

Then we get

x

6
√
x2 + 102

=
20− x

3
√

(20− x)2 + 102
.

By cross multiplying and factoring (which includes
solving a quartic equation) we get x ≈ 15.383 again.

Another way to solve this could be to use Snell’s
Law. But my guess is that Bella uses the Calculus
method.

4 Snell’s Law

Snell’s Law (named after Willebrord Snellius) is the
optics law that we use to determine how much light
bends when traveling through different media. for
example light bends when going from air to water
or from air to glass.

Snell’s Law
Let θ1, θ2 be the angles of incidence as in
Figure 6 and let v1, v2 be the velocities
of light through the two media. Then

sin(θ1)

sin(θ2)
=
v1
v2
.

Snell’s Law tells us how light bends, however,
Snell’s law also can be interpreted a different way.
The light bends to minimize the time from it’s start-
ing point to its finishing point (see Section 6.2).

We could use Snell’s law to calculate the mini-
mum time to go from point A to point B. We would
know that the

sin(θ1)

sin(θ2)
=

6

3
= 2.

And with a little bit of algebra and trigonometry
we should arrive at the same solution as before.

4.1 Bella on a different Path

What if Bella travels through several terrains to
fetch the stick. Let’s say she travels through open
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a
b

θ1

θ2

air glass

Fig. 6: The blue line is the path of light as travels
from air into glass. The bending of the light
(refraction) is something you witness in your
everyday life.

θ1

θ2

v1 = 6 mps

v2 = 3 mps

land water

Fig. 7: We use Snell’s Law.

field, thickets, hills, pond, swamp with speeds given
below in meters per second.

open field thickets hills pond swamp
2.2 2.0 1.7 1.4 1.0

Wait a minute something looks familiar! Com-
pare Figure 2 to Figure 8. We have just computed
an approximation of the Brachistochrone.

5 Questions

Some discussion questions.

1. Recall Snell’s Law sin(θ1)
sin(θ2)

= v1
v2
. Let’s apply

it for two mediums with v1 = c (air) and

θ1 = 45◦
θ2 = 39.23◦

open thickets hills pond swamp

v1 = 2.2 v2 = 2.0 v3 = 1.7

v4 = 1.4 v5 = 1.0

Fig. 8: We use Snell’s Law.

v2 = 0.75c (water) and the angle θ2 = 70◦.
So Snell’s law yields

sin(θ1)

sin(70◦)
=

c

.75c

sin(θ1) =
4

3
sin(70◦) ≈ 1.25

But we know −1 ≤ sin(θ1) ≤ 1. What is
happening?

2. What is the shape of the Brachistochrone?
The result from Section 6.1 gives us a formula
for a cycloid. What is a cycloid?

3. What is a tautochrone? And what does it
have to do with the Brachistohrone?

4. Who is Johann Bernoulli?

6 Appendices

6.1 Eine Kleine Calculus of Variations

The main problem under consideration in Calcu-
lus of Variations is finding extrema for real valued
functions of functions.

Let C2(R) be the set of twice differentiable func-
tions on R. Let I : C2(R)→ R. We are looking for
the extrema of I.

The basic example is

I(y) =

∫ B

A

f(x, y, y′)dx (2)

where y is a twice differentiable function of x. When
f(x, y, y′) is independent of x then our extrema sat-
isfies the Beltrami equation

y′
∂f

∂y′
− f = c where c is a constant. (3)

So given Equation 2 our extrema (minimums in
our problem) are functions that satisfy the Beltrami
equation. So we will first find the integral equation
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and the use the Beltrami equation to the the func-
tion which is minimal.

So our brachistochrone problem has I(y) being
the time for a marble to travel the path defined by
the curve y. Recall we had two points, say A =
(x0, y0) and B = (x1, y1). We have already seen
that v =

√
2g(y0 − y) see Equation 1 and where

g = −9.8 is the force of gravity. Since v = ds
dt where

s is the arc length traveled by the marble we have
dt = 1

vds. Now we can integrate from points A to
B to get

t =

∫ B

A

dt =

∫ B

A

1

v
ds

=

∫ B

A

1

v

√
1 + (y′)2dx

where ds =
√

1 + (y′)2dx

is from a standard calculus textbook

=

∫ B

A

√
1 + (y′)2√

2g(y0 − y)
dx

where v =
√

2g(y0 − y) from above

=
1√
2g

∫ B

A

√
1 + (y′)2√
y0 − y

dx

where v =
√

2g(y0 − y) from above.

So for our problem we have

I(y) =
1√
2g

∫ B

A

√
1 + (y′)2√
y0 − y

dx

where the function y that has minimum value satis-

fies the Beltrami equation with f(x, y, y′) =

√
1+(y′)2√
y0−y

.

Now we substitute f into the the Beltrami equation
and solve.

y′

(
y′

√
y0 − y

√
1 + (y′)2

)
−
√

1 + (y′)2√
y0 − y

= c

now we solve for y′ then we will integrate to get our
function y.

(y′)2 − (1 + (y′)2)
√
y0 − y

√
1 + (y′)2

= c

−1
√
y0 − y

√
1 + (y′)2

= c

(y0 − y)(1 + (y′)2) =
1

c2

1 + (y′)2 =
1

c2(y0 − y)

(y′)2 =
1

c2(y0 − y)
− 1

Thus

(y′)2 =
1

c2(y0 − y)
− 1 =

1− c2(y0 − y)

c2(y0 − y)

y′ =

√
1− c2(y0 − y)

c2(y0 − y)

dy

dx
=

√
1− c2(y0 − y)

c2(y0 − y)
.

So our solution satisfies

x =

∫
dx =

∫ √
c2(y0 − y)

1− c2(y0 − y)
dy.

Integrating this is quite straightforward using
the substitution y−y0 = 1

c2 sin2(t/2) and the trigono-

metric identity sin2(θ) = 1
2 (1 − cos(2θ)). After the

substitution we get

x =
1

2c2
[t− sin(t)] + b where b is a constant

y = y0 +
1

c2
sin2(t/2)

= y0 +
1

c2
(
1

2
(1− cos(t)))

= y0 +
1

2c2
(1− cos(t)).

Thus in parametric form or equation is

x = x0 +
1

2c2
[t− sin(t)]

y = y0 +
1

2c2
(1− cos(t)).

Two observations

1. This shape is a well known shape called a cy-
cloid. It maybe worth it to you to look it up.

2. Notice gravity is absent from our formula. How
would the equation change if we ask for the
brachistocrone on the moon?

6.2 Snell’s Law is minimizing time

T = T1 + T2

T (x) =

√
x2 + a2

v1
+

√
(x− c)2 + b2

v2

Next we compute the derivative and set it to zero

T (x) =
x

v1
√
x2 + a2

− x− c
v2
√

(x− c)2 + b2
= 0.

So x
v1
√
x2+a2

= x−c
v2
√

(x−c)2+b2
. Thus

x√
x2+a2

v1
=

x−c√
(x−c)2+b2

v2
.
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D1

D2

a
b

x

c− x

θ1

θ2

A

B

Fig. 9: The blue line is the path of light as trav-
els from one medium, say air, into an-
other medium, say water. You can see
the refraction (ie bending) of the light as
it passes from one medium to the next.
We use the Pythagorean Theorem to obtain
D1 =

√
a2 + x2 and D2 =

√
(c− x)2 + b2.

Also note sin(θ1) = a√
a2+x2

and sin(θ1) =
b√

(c−x)2+b2
.

Notice from the Figure 9 that

sin(θ1) =
x√

x2 + a2

and

sin(θ2) =
x− c√

(x− c)2 + b2
.

Therefore the x value that minimizes the time spent

traveling by the light is sin(θ1)
v1

= sin(θ2)
v2

.

Fig. 10: Here Bella is hanging out with the chickens
and one duck.
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