Math 6250 Homework 1

Name:__

1. For the following series

$$S(n) = \sum_{k=1}^{n} 3k^2 - 3k + 1$$

- (a) Compute S(1), S(2), S(3), and S(4)
- (b) Conjecture a formula for S(n) for all $n \in \mathbb{N}$.
- (c) Prove using induction the formula you conjectures above is correct.
- 2. State (as we did in class) and Prove Pascal's Lemma. Here you do not need induction.
- 3. Let \mathcal{R} be the relation on \mathbb{Z} defined by

$$a\mathcal{R}b \iff 5|(a-b).$$

- (a) Note $3\mathcal{R}28$ since it is true that 5|(3-28) and 3 does not relate to 27 since it is false that 5|(3-27). Find three other pairs of integers that relate to each other.
- (b) State \mathcal{R} is reflexive and prove it. That is, say

For all $z \in \mathbb{Z}$ we have $z\mathcal{R}z$.

Proof. \cdots

- (c) State \mathcal{R} is symmetric and prove it.
- (d) State \mathcal{R} is transitive and prove it.
- 4. Let \mathcal{R} be the relation on the set $\mathbb{N} \times \mathbb{N}$ defined by

$$(a_1, b_1)\mathcal{R}(a_2, b_2) \iff a_1 + b_2 = a_2 + b_1$$

(a) Note the ordered pair $(1,2)\mathcal{R}(8,9)$ since 1+9=2+8. Find four other ordered pairs of natural numbers that relate to each other.

(b) State \mathcal{R} is reflexive and prove it. That is, say

For all pairs $(a,b) \in \mathbb{N} \times \mathbb{N}$ we have $(a,b)\mathcal{R}(a,b)$.

Proof. ...

- (c) State \mathcal{R} is symmetric and prove it.
- (d) State \mathcal{R} is transitive and prove it.
- 5. Let \mathcal{R} be the relation on the set $\mathbb{Z} \times \mathbb{Z} \setminus \{0\}$ defined by

$$(a_1, b_1)\mathcal{R}(a_2, b_2) \iff a_1b_2 = a_2b_1$$

- (a) Note the ordered pair $(6,4)\mathcal{R}(9,6)$ since $6 \cdot 6 = 4 \cdot 9$. Find four other ordered pairs of integers that relate to each other.
- (b) State \mathcal{R} is reflexive and prove it. That is, say

```
For all pairs (a,b) \in \mathbb{Z} \times \mathbb{Z} \setminus \{0\} we have (a,b)\mathcal{R}(a,b).
```

Proof. \cdots

- (c) State \mathcal{R} is symmetric and prove it.
- (d) State \mathcal{R} is transitive and prove it.
- 6. This problem refers to Problem 3. Let \mathcal{R} be the relation on \mathbb{Z} defined by

$$a\mathcal{R}b \iff 5|(a-b).$$

Is the usual operation of addition **well defined**? State what it means for addition to be well defined over this relation and prove that addition is well defined.