1 Integrals

- 1. $\iint_R x + y \, dA$ over the region defined by x + y = 2 and the coordinate axes.
- 2. $\iint_R xy \, dA$ over the region defined by $y = x^2$ and the line y = x + 1.
- 3. $\iint_R e^{x^2} dA$ over the region defined by y = -x, y = 2x and the vertical line x = 4.
- 4. $\iint_R e^{x^2+y^2} dA$ over the region defined by the portion of the circle $x^2 + y^2 = 4$ in the third quadrant.
- 5. $\iint_{R} \sqrt{\frac{\tan^{-1}(y/x)}{x^2 + y^2}} dA \text{ over the region defined by the portion of the circle } x^2 + y^2 = 4$ above the lines y = -x and y = x.
- 6. Find the volume below the paraboloid $z = 12 x^2 y^2$ and above the xy-plane.
- 7. $\iint_R \sin(x-y)\cos(x+y) dA$ over the region defined the lines y=x+2, y=x+4, y=-x and y=-x+3. Hint the change of variables is u=x-y and v=x+y.
- 8. $\iint_{R} \frac{x-y}{2x+y} dA$ over the region defined the lines y=x+2, y=x, y=-2x+2 and y=-2x+3.
- 9. $\iint_R xy \, dA$ over the region defined the graphs of xy = 1, xy = 3 and the lines y = x and y = 3x (first quadrant). Hint x = u/v and y = v.
- 10. $\iint_R (x-y)e^{x^2-y^2} dA$ over the region defined the lines y=x+2, y=x, y=-x and y=-x+3.
- 11. $\iint_R e^{x^2+4y^2} dA$ over the region defined by the portion of the ellipse $\frac{x^2}{4}+y^2=1$ in the third quadrant. Hint use the change of variables $x=2v\cos(u)$ and $y=v\sin(u)$. And note I had $\pi \leq u \leq \frac{3\pi}{2}$

2 Line Integrals

12. $\int_C x dx$. Let C be line segment from (0,1) to (3,2).

- 13. $\int_C xy \, ds$. Let C be line segment from (0,1) to (3,2).
- 14. $\int_C \langle -x, y \rangle \cdot d\mathbf{r}$. Let C be line segment from (0, 1) to (3, 2).
- 15. $\int_C x \, dy$. Let C be line segment from (0,1) to (3,2).
- 16. $\oint_C xy \, dx$. Let C be the triangle traced from (0,0) to (0,2) to (1,2) and then back to (0,0).
- 17. $\oint_C \langle -x, y \rangle \cdot d\mathbf{r}$. Let C be the triangle traced from (0,0) to (0,2) to (1,2) and then back to (0,0).
- 18. $\oint_C \langle 1, xy \rangle \cdot d\mathbf{r}$. Let C be the circle $x^2 + y^2 = 4$ traced counter-clockwise.
- 19. $\oint_C -x + y ds$. Let C be the circle $x^2 + y^2 = 4$ traced counter-clockwise.

3 Conservative Fields and the FTVC

- 20. Graph the following fields.
 - (a) $\mathbf{F}(x,y) = \langle 2x y, x \rangle$
 - (b) $\mathbf{F}(x,y) = \langle y, x \rangle$
 - (c) $\mathbf{F}(x,y) = \langle 2 y, 1 \rangle$
- 21. is the field conservative? If yes find it's potential.
 - (a) $\mathbf{F}(x,y) = \langle x, y \rangle$
 - (b) $\mathbf{F}(x,y) = \langle y, x \rangle$
 - (c) $\mathbf{F}(x,y) = \langle y \cos(xy), x \cos(xy) \rangle$
 - (d) $\mathbf{F}(x,y) = \langle 2 y, 1 \rangle$
- 22. Use the FTVC to solve
 - (a) $\int_C \langle y^2 + 6x, 2xy \rangle \cdot d\mathbf{r}$. Let C be the line segment from (-2, 0) to (2, 0).
 - (b) $\int_C \langle y^2 + 6x, 2xy \rangle \cdot d\mathbf{r}$. Let C trace the parabola $y = 4 x^2$ from (-2, 0) to (2, 0).
 - (c) $\int_C \langle xe^{x^2}, 1 \rangle \cdot d\mathbf{r}$. Let C be the line segment from (0,0) to (1,1).

(d)
$$\oint_C \langle 2xe^{x^2+y^2}, 2ye^{x^2+y^2} \rangle \cdot d\mathbf{r}$$
. Let C trace the circle $x^2 + y^2 = 4$ from $(-2,0)$ to $(2,0)$.

4 Green's Theorem

- 23. $\oint_C \langle x, -y \rangle \cdot d\mathbf{r}$. Let C be outside of the rectangle traced from (0,0) to (0,2) to (1,2) to (1,0) and then back to (0,0).
- 24. $\oint_C \langle e^{x^3} xy, e^{y^3} y \rangle \cdot d\mathbf{r}$. Let C be outside of the triangle traced from (0,0) to (0,2) to (1,2) and then back to (0,0).
- 25. $\oint_C \langle \cos(x^2) + y, \cos(y^2) + xy \rangle \cdot d\mathbf{r}$. Let C be the circle $x^2 + y^2 = 4$ traced counter-clockwise.

5 Div/Grad/Curl

26. Define

$$f(x, y, z) = x^3 - yz^2$$
 and $\mathbf{F}(x, y, z) = \langle x^3, yz^2, xy \rangle$.

Compute the following, if possible, and if not possible state why.

- (a) $\operatorname{div}(f(x, y, z))$
- (b) $\operatorname{grad}(f(x, y, z))$
- (c) $\operatorname{curl}(f(x, y, z))$
- (d) $\operatorname{div}(\mathbf{F}(x, y, z))$
- (e) grad($\mathbf{F}(x, y, z)$)
- (f) $\operatorname{curl}(\mathbf{F}(x, y, z))$
- (g) $\nabla \cdot \mathbf{F}(x, y, z)$
- (h) $\nabla \times (\nabla \cdot \mathbf{F}(x, y, z))$
- (i) $\nabla \times (\nabla f(x, y, z))$

6 Surface Integrals

- 27. For the following exercises, let S be the hemisphere $x^2 + y^2 + z^2 = 4$, with $z \ge 0$, and evaluate each surface integral, in the counterclockwise direction.
 - (a) $\iint z dS$

- (b) $\iint (x-2y)dS$
- 28. For the following exercises, evaluate

$$\iint_{S} \mathbf{F} \cdot \mathbf{N} dS = \iint_{S} \mathbf{F} \cdot d\mathbf{S}$$

for vector field \mathbf{F} , where \mathbf{N} is an outward normal vector to surface S.

- (a) F(x, y, z) = xi + 2yj 3zk, and S is that part of plane 15x 12y + 3z = 6 that lies above unit square $0 \le x \le 1$, $0 \le y \le 1$.
- (b) F(x, y, z) = xi + yj, and S is the hemisphere $z = \sqrt{1 x^2 y^2}$.
- (c) $F(x, y, z) = x^2i + y^2j + z^2k$, and S is the portion of plane z = y + 1 that lies inside cylinder $x^2 + y^2 = 1$.

7 Stokes' Theorem

- 29. For the following compute both $\iint_S \operatorname{curl}((\mathbf{F})) \cdot d\mathbf{S}$ and $\int_{\partial S} \mathbf{F} \cdot d\mathbf{r}$. Verify they are the same.
 - (a) $F(x,y,z) = y^2i + z^2j + x^2k$; S is the first-octant portion of plane x + y + z = 1.
 - (b) F(x, y, z) = zi + xj + yk; S is the hemisphere $z = (9 x^2 y^2)^{1/2}$.
 - (c) $F(x, y, z) = y^2 i + 2xj + 5k$; S is the hemisphere $z = (9 x^2 y^2)^{1/2}$.
 - (d) F(x, y, z) = zi + 2xj + 3yk; S is upper hemisphere $z = \sqrt{9 x^2 y^2}$.
 - (e) F(x, y, z) = (x + 2z)i + (y x)j + (z y)k; S is a triangular region with vertices (3, 0, 0), (0, 3/2, 0), and (0, 0, 3).