Math 2320 - Test 1 Review

§1.1-§2.3

1 Riemann Sums

1. Use the RH Rule to approximate the indicated integral.

(a)
$$f(x) = x^2 + 1$$
, $n = 4$, $a = 1$, $b = 5$

(b)
$$f(x) = x^3 - 1$$
, $n = 4$, $a = -1$, $b = 1$

(c)
$$f(x) = 3x + 1$$
, $n = 10$, $a = 0$, $b = 5$

2 FTC

2. Use the FTC to compute

(a)
$$\frac{d}{dx} \left[\int_{1}^{x} e^{t^2} dt \right]$$

(b)
$$\frac{d}{dx} \left[\int_{x}^{2} f(t) dt \right]$$

(c)
$$\frac{d}{dx} \left[\int_1^{x^3} e^{t^2} dt \right]$$

(d)
$$\frac{d}{dx} \left[\int_{x}^{2x} e^{t^2} dt \right]$$

3 Integrals

$$3. \int \frac{x^2 - 1}{x} dx$$

4.
$$\int \cos(x)dx$$

$$5. \int \frac{1}{1+x^2} dx$$

$$6. \int \frac{1}{\sqrt{1-x^2}} dx$$

7.
$$\int (4x^3 - 2)^{1/3} x^2 dx$$
 u-sub

8.
$$\int e^{(4x^3-2)}x^2dx$$
 u-sub

9.
$$\int \cos(4x^3 - 2)x^2 dx$$
 u-sub

10.
$$\int \frac{1}{x \ln(x)} dx \text{ u-sub}$$

11.
$$\int \frac{\sin(x)}{\cos(x)} dx \text{ u-sub}$$

12.
$$\int \frac{\sec^2(x)}{\sqrt{\tan(x)}} dx \text{ u-sub}$$

13.
$$\int \frac{e^x}{1+e^x} dx \text{ u-sub}$$

14.
$$\int \frac{e^x}{1 + e^{2x}} dx \text{ u-sub}$$

15.
$$\int \frac{1}{\sqrt{1-4x^2}} dx \text{ u-sub, let } u = 2x$$

4 Area between curves and Volume

- 16. Find the area of the indicated region.
 - (a) between $f(x) = x^2$, $f(x) = 1 x^2$
 - (b) below $y = e^x$ above the line y = 1 and to the left of y = 4.
 - (c) below $y = \ln(x)$ above the x-axis and to the left of y = 4.
 - (d) between $x = y^2, y = x 2$
- 17. Find the volume of the indicated region using method of slicing.
 - (a) between $y=x^2$, y=14 and to the right of the y-axis revolved about the x-axis.
 - (b) between $y = x^2$, y = 14 and to the right of the y-axis revolved about the y-axis.

- (c) between $f(x) = x^2$, $f(x) = 1 x^2$ revolved about the x-axis
- (d) below $y = e^x$ above the line y = 1 and to the left of y = 4.
- (e) below $y = \ln(x)$ above the x-axis and to the left of y = 4.
- (f) between $x = y^2$, y = x 2 revolved about the y-axis.
- 18. Find the volume of the indicated region using method of shells.
 - (a) between $y = x^2$, y = 14 and to the right of the y-axis revolved about the x-axis.
 - (b) between $y = x^2$, y = 14 and to the right of the y-axis revolved about the y-axis.
 - (c) the region above $f(x) = e^{x^2}$, below y = 7 and in the first quadrant revolved about the y-axis.
 - (d) between $f(x) = x^2$, $f(x) = 1 x^2$
 - (e) below $y = e^x$ above the line y = 1 and to the left of y = 4.
 - (f) below $y = \ln(x)$ above the x-axis and to the left of y = 4.
 - (g) between $x = y^2$, y = x 2 and the x-axis revolved about the x-axis.

5 Arc Length

- 19. Find the arclength from x = 1 to x = 2 for y = 3x 1.
- 20. Find the arclength from the point (0,2) to (1,7) for y=5x+2.
- 21. Set up the integral (do not solve) to find the arclength from the point (-2,0) to (2,0) for $y=\sqrt{4-x^2}$.

6 Techniques of Integration

$$22. \int \frac{x}{x^2 - 1} dx$$

23.
$$\int \frac{e^x}{1+e^x} dx$$

$$24. \int \frac{e^x}{1 + e^{2x}} dx$$

$$25. \int \frac{\ln(x)}{x} dx$$

26.
$$\int x \ln(x) dx$$

$$27. \int x^2 e^x dx$$

28.
$$\int \arctan(x)dx$$

29.
$$\int \ln(x) dx$$

30.
$$\int x \sin(2x) dx$$

31.
$$\int \sin^2(3x)\cos(3x)dx$$

$$32. \int \sin^2(3x) \cos^3(3x) dx$$

33.
$$\int \sin^2(3x) dx$$

$$34. \int \sin^2(4x)\cos^2(4x)dx$$

35.
$$\int \tan^3(x) \sec^2(x) dx$$

36.
$$\int \frac{1}{\sqrt{4-9x^2}} dx$$

37.
$$\int \frac{1}{4+9x^2} dx$$

$$38. \int \frac{1}{(1-x^2)^{3/2}} dx$$

$$39. \int \frac{\sqrt{1+x^2}}{x} dx$$

40.
$$\int \frac{1}{x^2\sqrt{1-x^2}} dx$$

41.
$$\int \frac{2x+3}{(x+1)(x+2)} dx$$

42.
$$\int \frac{x^2 + x + 1}{x^3 + x} dx$$

43.
$$\int \frac{2x^2 + 3x + 2}{x^2(x+1)} dx$$

44.
$$\int \frac{2x-1}{(x^2+1)(x-1)} dx$$

45.
$$\int \frac{1}{x^3(x^2+1)^2(x-1)^3} dx$$
 Set up the partial fractions only. Do not solve for A,B,.... or integrate.

46.
$$\int_{1}^{\infty} \frac{1}{x} dx$$

$$47. \int_{1}^{\infty} \frac{1}{x^2} dx$$

$$48. \int_{1}^{\infty} \frac{1}{x^{1/2}} dx$$

$$49. \int_0^1 \frac{1}{x} dx$$

50.
$$\int_0^1 \frac{1}{x^2} dx$$

51.
$$\int_0^1 \frac{1}{x^{1/2}} dx$$

$$52. \int_{1}^{\infty} xe^{-x} dx$$

$$53. \int_0^1 \ln(x) dx$$