Math 3520 - Test 2

Name:_____

Your answers must be in clear and complete proofs.

1. Prove the set of irrationals is uncountable.

2. Let $a, b, c \in \mathbb{Z}$ with $b \neq 0$. Show if a|b and b|c then a|c.

3. Let $a, b, c \in \mathbb{Z}$. If a|bc and gcd(a, b) = 1 then a|c.

4. For the following pair of numbers, find their gcd and and find a linear combination of the numbers equal to their gcd.

a = 253 and b = 207

5. Prove $3|n^3 - n$ for every integer n.

6. Do **one** of the following. We define the algebraic structure $(\mathbb{Z}, \circledast)$ where

$$a \circledast b = ab + a + b - 2.$$

- (a) Show $(\mathbb{Z}, \circledast)$ does not satisfy G1.
- (b) Show $(\mathbb{Z}, \circledast)$ does not satisfy G2.

- 7. For the groups $(\mathbb{Z}_4, +)$ to (\mathbb{Z}_5^*, \cdot) calculate the following orders of elements.
 - Find the orders of $1, 2, 3 \in \mathbb{Z}_4$ and
 - Find the orders of $1, 2, 3 \in \mathbb{Z}_5^*$.

- 8. Find an isomorphism from $(\mathbb{Z}_4, +)$ to (\mathbb{Z}_5^*, \cdot) . Verify it is an isomorphism by computing and comparing
 - f(3+1) and $f(3) \cdot f(1)$
 - f(2+2) and $f(2) \cdot f(2)$

9. Define $T = \{3n | n \in \mathbb{Z}\}$. Clearly T is a nonempty subset of Z. Show using the two step subgroup test that (T, +) is a subgroup of (Z, +).