$\mathbf{MATH}\ \mathbf{2320}\ \mathrm{Test}\ 1$

Name:
Using the definition of the integral compute
$\int_0^2 2x + 3 dx.$

2. Let acceleration be given by $a(t)=6t-12e^{2t}$. And let $v_0=4$ and $s_0=-3$. Find v and s. What is the velocity when t=3 sec.

3. Find the area between the functions $x = y^2$, y = x - 2.

4. Find the volume of the solid formed when rotating the region bounded by y=2x and y=6-x and the y-axis around the x-axis.

- 5. Two easy integrals:
 - (a) $\int \cos(4x) dx$

(b) $\int e^{-3x} dx$

 $6. \int x^2 \ln(x) \, dx$

7.
$$\int x^3 \cos(x^4 + 1) \, dx$$

8. $\int \sin^2(3x) \, dx$

9. $\int \sin(3x) \cos^{1/2}(3x) \, dx$

$$10. \int \frac{1}{\sqrt{x^2+4}} \, dx$$

take home: Zeno's Paradox

We will attempt to compute another infinite summation.

$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \dots \tag{1}$$

- 1. Take a guess at what the sum is in Equation 1.
- 2. Compute the limit $\lim_{n\to\infty} \left(\frac{1}{2}\right)^n$
- 3. Remember from Algebra class that

$$1 + r + r^2 + r^3 + \dots + r^n = \frac{1 - r^{n+1}}{1 - r}$$

So for example

$$1 + 3 + 3^2 + 3^3 + 3^4 = \frac{1 - 3^{4+1}}{1 - 3} = \frac{1 - 243}{-2} = \frac{-242}{-2} = 121$$

Compute

- (a) $1+2+2^2+2^3+2^4$
- (b) $1+2+2^2+2^3+2^4+\cdots+2^{100}$ (no need to simplify this one)
- (c) $1 + \frac{1}{2} + (\frac{1}{2})^2 + (\frac{1}{2})^3 + (\frac{1}{2})^4 + \dots + (\frac{1}{2})^{10}$
- 4. What is $\lim_{n\to\infty} 1 + \frac{1}{2} + (\frac{1}{2})^2 + \cdots + (\frac{1}{2})^n$? Hint:

$$\lim_{n \to \infty} 1 + \frac{1}{2} + (\frac{1}{2})^2 + \dots + (\frac{1}{2})^n = \lim_{n \to \infty} \frac{1 - (\frac{1}{2})^{n+1}}{1 - \frac{1}{2}} = \lim_{n \to \infty} \frac{1}{1 - \frac{1}{2}} - \lim_{n \to \infty} \frac{(\frac{1}{2})^{n+1}}{1 - \frac{1}{2}}$$

$$= \frac{1}{1 - \frac{1}{2}} - \lim_{n \to \infty} \frac{1}{1 - \frac{1}{2}} (\frac{1}{2})^{n+1}$$

$$= \frac{1}{1 - \frac{1}{2}} - \frac{1}{1 - \frac{1}{2}} \lim_{n \to \infty} (\frac{1}{2})^{n+1}$$

$$= \dots \text{ you finish!}$$

5. Now you know the answer to Equation 1 (compare to your guess). Repeat your work in Question 4. Compute the following:

(a)
$$1 + \frac{1}{3} + (\frac{1}{3})^2 + (\frac{1}{3})^3 + (\frac{1}{3})^4 + \dots +$$

(b)
$$1 + \frac{-1}{3} + (\frac{-1}{3})^2 + (\frac{-1}{3})^3 + (\frac{-1}{3})^4 + \dots +$$

(c)
$$1+2+(2)^2+(2)^3+(2)^4+\cdots+$$