MATH 2320 Practice Test 3

1. Root Test

(a)
$$\sum_{k=1}^{\infty} \left(\frac{k^2 + 1}{2k^2 - 1} \right)^k$$

(b)
$$\sum_{k=1}^{\infty} \left(\frac{3k^2 + 1}{2k^2 - 1} \right)^k$$

(c)
$$\sum_{k=1}^{\infty} \left(1 - \frac{1}{k}\right)^{k^2}$$

(d)
$$\sum_{k=1}^{\infty} \left(1 + \frac{2}{k}\right)^{k^2}$$

2. Divergence Test

(a)
$$\sum_{k=1}^{\infty} \frac{k^2 + k}{2k^2 - 1}$$

(b)
$$\sum_{k=1}^{\infty} \left(1 + \frac{1}{2k-1}\right)^k$$

(c)
$$\sum_{k=1}^{\infty} \frac{2^k + 1}{2k^2 + 4}$$

3. Comparison Test

(a)
$$\sum_{k=1}^{\infty} \frac{1}{k^3 + 1}$$

(b)
$$\sum_{k=1}^{\infty} \frac{1}{k^2 + 1}$$

(c)
$$\sum_{k=3}^{\infty} \frac{1}{k-1}$$

(d)
$$\sum_{k=2}^{\infty} \frac{1}{\sqrt{k}-1}$$

4. Limit Comparison Test

- (a) $\sum_{k=1}^{\infty} \frac{3k^2 + 1}{2k^5 1}$
- (b) $\sum_{k=1}^{\infty} \sqrt{\frac{3k^2+1}{2k^3-1}}$
- (c) $\sum_{k=1}^{\infty} \sqrt{\frac{3k^2 + 1}{2k^4 1}}$
- (d) $\sum_{k=1}^{\infty} \sqrt{\frac{3k^2+1}{2k^5-1}}$
- (e) $\sum_{k=1}^{\infty} \frac{\sin(\frac{1}{k})}{\sqrt{k}}$. Hint: try comparing to $\sum b_k = \sum \frac{1}{k^{3/2}}$.
- 5. Alternating Series Test
 - (a) $\sum_{k=1}^{\infty} \frac{1}{k} (-1)^k$
 - (b) $\sum_{k=1}^{\infty} \frac{k}{k+1} (-1)^k$
 - (c) $\sum_{k=1}^{\infty} \left(1 \frac{1}{k}\right)^k (-1)^k$
- 6. Approximating Functions with Polynomials
 - (a) Let $f(x) = \ln(2x 3) + 2x$ find a polynomial of degree 3 that approximates f(x) near the point a = 2. Use the polynomial to approximate f(3).
 - (b) Let $f(x) = x^5$ find a polynomial of degree 3 that approximates f(x) near the point a = 2. Use the polynomial to approximate f(3).
- 7. **Power Series** Find the radius of convergence and interval of convergence for the following power series.
 - (a) $\sum_{n=1}^{\infty} \frac{1}{n} x^n$
 - (b) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n} x^n$

- (c) $\sum_{n=1}^{\infty} \frac{n^2+1}{n+1} x^n$
- (d) $\sum_{1}^{\infty} \frac{1}{2^n} x^n$
- (e) $\sum_{n=1}^{\infty} \frac{1}{n!} x^n$
- (f) $\sum_{n=1}^{\infty} \frac{3^n}{4^n + 1} x^n$
- (g) $\sum_{n=1}^{\infty} \frac{1}{2n} x^{2n}$
- 8. Taylor Series Find the Taylor series for the following functions centered at a
 - (a) $f(x) = e^{2x}$ where a = 0
 - (b) $f(x) = e^{2x}$ where a = 1
 - (c) $f(x) = e^x$ where a = 0
 - (d) $f(x) = \sin(x)$ where a = 0
 - (e) $f(x) = \cos(x)$ where a = 0
 - (f) $f(x) = \frac{1}{1-x}$ where a = 0
- 9. Taylor Series Find the Taylor series using known series.
 - (a) $f(x) = e^{2x}$ where a = 0
 - (b) $f(x) = x^2 e^x$ where a = 0
 - (c) $f(x) = \frac{e^x 1}{x}$ where a = 0(d) $f(x) = \frac{1}{1+x}$ where a = 0

 - (e) $f(x) = \frac{1}{1+x^2}$ where a = 0
 - (f) $f(x) = \arctan(x)$ where a = 0
- 10. Conic Sections Graph the following
 - (a) $x^2 + y^2 = 1$
 - (b) $x^2 y^2 = 1$
 - (c) $-x^2 + y^2 = 1$

- (d) $-x^2 y^2 = 1$
- (e) $\frac{x^2}{4} + \frac{y^2}{9} = 1$
- (f) $\frac{x^2}{4} \frac{y^2}{9} = 1$ (g) $-x^2 + y = 1$
- (h) $-x^2 y = 1$
- (i) $x y^2 = 1$
- $(j) \ y = x^2$