Name:_____

- 1. Let $\mathbf{r}(t) = \langle 2\cos(t), 3\sin(t) \rangle$.
 - (a) Graph.
 - (b) Compute the tangent line at the point $t = 3\pi/4$.
 - (c) Compute the velocity and acceleration $t = \pi/4$. Add these two to your graph.

- 2. Let $f(x, y) = x^2 + y^2$.
 - (a) Graph the contour plot for values z = -1, 0, 1, 2, 3.
 - (b) Compute the gradient at the point P(1, -1), place the gradient on your graph.
 - (c) Compute the directional derivative of f(x, y) at the point P in the direction of $\mathbf{v}\langle 1, 2 \rangle$.

- 3. Let $f(x, y, z) = e^{x^2 yz^2} + 3x 2yz$. Let P be the point (2, 1, -2).
 - (a) Compute the tangent plane of f(x, y, z) at P.
 - (b) Approximate the value f(1.9,1.1,-2.1) using your plane.

- 4. Using the second Derivative Test find and classify the extrema of the following function: $f(x,y) = x^2 + 2x + y^3 4y^2 + 4y + 2$
 - (a) If D(P) > 0 and $f_{xx}(P) > 0$ then f has a local minimum at P.
 - (b) If D(P) > 0 and $f_{xx}(P) < 0$ then f has a local maximum at P.
 - (c) If D(P) < 0 then f has a saddle point at P.
 - (d) If D(P) = 0 then the second derivative test is inconclusive.

where $D(x, y) = f_{xx}(x, y) f_{yy}(x, y) - (f_{xy}(x, y))^2$.

5. Using the La Grange Multipliers find the Max or Minimum of the following function subject to the given constraint: $f(x, y, z) = x^2 + y^2 + z^2$ subject to 2x - y + z = 4

6. $\iint_R \sin(y^2) dA$ over the region contained within y = x, y = -2x and y = 4.

7. Prove: If $\|\mathbf{r}(t)\|$ is constant then $\mathbf{r}(t)$ is perpendicular to $\mathbf{r}'(t)$.