Math 3330 - Review for Test 1

To prepare for the test you should do Quiz 1 and Quiz 2 the homework and here are some sample problems.

1 Introduction to parametric equations

- 1. for the following functions find a parametrization: y = x 2, $x^2 + y^2 = 4$ and x = 4.
- 2. for the following functions given parametrically find a representation given in rectangular coordinates:
 - x = 3t 1 $y = t^2 2$

•
$$x = 3\cos(t)$$
 $y = 2\sin(t)$. Hint what is $\frac{x^2}{9} + \frac{y^2}{4}$ equal to?

• $x = 2e^t$ $y = 3e^t$

3. Let $x = 2\sin(t)$ $y = 3\cos(t)$.

- (a) Sketch its graph and indicate the increasing direction of t.
- (b) Compute $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$.
- (c) Find the equation of the line tangent at the point $t = \pi/4$.
- 4. For the triangle with vertices P(0,0), Q(1,2) and R(-1,1) find a parametrization.
- 5. Find the arc length for the function over the interval $x = \cos(2t)$ and $y = \sin(2t)$ where $0 \le t \le \pi$.

2 Polar

- 6. Graph: $r = \cos(2\theta)$
- 7. Graph: $r = 16 \sin(2\theta)$
- 8. Graph: $r = \sin(\theta)$
- 9. Graph: $r = 1 + \sin(\theta)$
- 10. Graph: $r = 2 + \sin(\theta)$

- 11. Graph: $r = e^{\theta}$
- 12. Translate the following from rectangular to polar: y = 2x, y = 3x 1, $x^2 + y^2 = 4$ and $(x 2)^2 + y^2 = 4$.
- 13. Translate the following from polar to rectangular: r = 2, $r = 4\cos(\theta)$ and $r = \frac{7}{2\cos(\theta) 2\sin(\theta)}$.
- 14. Find $\frac{dy}{dx}$ for $r = e^{\theta}$.
- 15. Calculate the arc length for the entire graph of: $r = 7\cos(\theta)$
- 16. Calculate the arc length for the entire graph of: $r = e^{3\theta}$
- 17. Find the area of the region in the first quadrant and inside the graph $r = e^{2\theta}$ where $0 \le \pi/2$.
- 18. Find the area of the region in the first quadrant and inside the graph $r = \sin(2\theta)$ from $0 \le \pi/2$.

3 Conic Sections

19. Graph the two parabolas

(a)
$$y^2 = 4x$$

(b) $x^2 = -8y$

- 20. Graph the two ellipses
 - (a) $(x+3)^2 + 4(y-5)^2 = 16$ (b) $\frac{1}{4}x^2 + \frac{1}{6}(y+2)^2 - 1 = 0$
- 21. Graph the two hyperbolas

(a)
$$\frac{x^2}{16} - \frac{y^2}{9} = 1$$

(b) $9y^2 - x^2 = 36$

4 These are from quiz 2 and should prepare you for the test

- 22. Graph the following:
 - (a) $z = x^2$ in \mathbb{R}^3 remember first graph in \mathbb{R}^2 then in \mathbb{R}^3 . Your answer should include both graphs.
 - (b) $\frac{z^2}{4} y^2 = 16$ make certain to label points of intersection on the z-axis and the y-axis.
 - (c) $x^2 + y^2 + (z 4)^2 = 2.$
- 23. Find the vector $\mathbf{v} \in \mathbb{R}^2$ so that \mathbf{v} is 3-units long and if its initial point is the origin, \mathbf{v} makes a 135% angle with the x-axis.
- 24. Let $\mathbf{v} \in \mathbb{R}^3$ so $\mathbf{w} = \langle 1, 2, 3 \rangle$ that $2\mathbf{v} + \mathbf{w} = 3\mathbf{v}$. Compute the norm of $\|\mathbf{v}\|$.
- 25. Find a vectors so that
 - (a) parallel to y = x + 2 and is one unit long (in \mathbb{R}^2)
 - (b) perpendicular to y = x + 2 and is one unit long (in \mathbb{R}^2)
 - (c) parallel to z-axis and is three units long (in \mathbb{R}^3)
 - (d) has initial point P(1,2,3,4) and final point Q(2,-1,0,-1). (in \mathbb{R}^4)
 - (e) parallel to xz-plane and is two units long (in \mathbb{R}^3)
 - (f) perpendicular to xz-plane and is two units long (in \mathbb{R}^3)
- 26. Let $\mathbf{v_1}, \mathbf{v_2} \in \mathbb{R}^3$ so $\mathbf{v_1} = \langle 1, 2, 3 \rangle$ and $\mathbf{v_2} = \langle 2, -1, 1 \rangle$. Find c_1 and c_2 so that

$$c_1\mathbf{v_1} + c_2\mathbf{v_2} = \langle 1, -7, -3 \rangle$$

- 27. Let $\mathbf{v_1}$, $\mathbf{v_2}$ and $\mathbf{v_3} \in \mathbb{R}^3$ so $\mathbf{v_1} = \langle 1, 2, 3 \rangle$ $\mathbf{v_2} = \langle 2, -1, 1 \rangle$ and $\mathbf{v_3} = \langle 4, -3, 7 \rangle$.
 - (a) Find angle between $\mathbf{v_1}$ and $\mathbf{v_2}$.
 - (b) Compute $\frac{1}{\|\mathbf{v}_1\|^2} (\mathbf{v}_1 \cdot \mathbf{v}_1) \mathbf{v}_1$.
 - (c) Find three different unit vectors perpendicular to $\mathbf{v_1}$.
 - (d) Find \mathbf{u} a unit vector parallel to $\mathbf{v_3}$.
 - (e) Compute $\mathbf{u} \cdot \mathbf{v_3}$ and compute $\|\mathbf{v_3}\|$.

- 28. Prove $\mathbf{v} \cdot \mathbf{v} = \|\mathbf{v}\|^2$.
- 29. Prove $\|\mathbf{v} + \mathbf{w}\|^2 + \|\mathbf{v} \mathbf{w}\|^2 = 2\|\mathbf{v}\|^2 + 2\|\mathbf{w}\|^2$.
- 30. Find the work done by a force given by $\mathbf{F} = 4i 6j + k$ that is applied to a point that moves from P(1, 2, 3) to Q(2, -1, 3).
- 31. Let $\mathbf{v_1}$, $\mathbf{v_2}$ and $\mathbf{v_3} \in \mathbb{R}^3$ so $\mathbf{v_1} = \langle 1, 2, 3 \rangle$ $\mathbf{v_2} = \langle 2, -1, 1 \rangle$ and $\mathbf{v_3} = \langle 4, -3, 7 \rangle$.
 - (a) Compute $\mathbf{v_1} \times \mathbf{v_2}$.
 - (b) Compute the area of the parallelogram formed by the two vectors $\langle 2, -1 \rangle$ and $\langle 4, -3 \rangle$. Also draw the vectors and the parallelogram.
 - (c) Compute the volume of a parallelepiped formed by the three vectors v₁, v₂ and v₃.
 - (d) Find a single unit vector \mathbf{w} that is simultaneously perpendicular to $\mathbf{v_1}$ and $\mathbf{v_2}$.
 - (e) Show that any vector of the form $\langle a 3b, a, b a \rangle$ where $a, b \in \mathbb{R}$ is perpendicular to $\mathbf{v_1}$.