Math 3330 - Test 1

Name:__

No calculators and show all work.

- 1. Find a parametric equation for the following:
 - (a) The line: 2x + 3y = 7.

(b) The circle: $x^2 + y^2 = 12$.

(c) The line segment from point P(1,3) to the point Q(-3,4). For this problem include a range for t.

2. Define the function parmaterically: $x = 2\cos(2t)$ and $y = 3\sin(3t)$. Find the equation of the tangent line at $t = \pi/4$. 3. Find the arclenth from t=0 to t=3 for the function given paramtrically as: $x=\cos(3t^2) \text{ and } y=\sin(3t^2)$

4. Graph the functions r = 2 and $r = 4\cos(\theta)$ and shade the intersection area.

5. Find the area inside $r = \sqrt{2 + \cos(\theta)}$.

6. Graph the function $z = y^2$ in \mathbb{R}^2 and in \mathbb{R}^3 .

7. Prove $\|\mathbf{v} + \mathbf{w}\|^2 + \|\mathbf{v} - \mathbf{w}\|^2 = 2\|\mathbf{v}\|^2 + 2\|\mathbf{w}\|^2$.

8. Let $\mathbf{v_1} = \langle 1, 1, 2 \rangle$ and $\mathbf{v_2} = \langle 1, -3, 7 \rangle$.

- (a) Find the angle between $\mathbf{v_1}$ and $\mathbf{v_2}$.
- (b) the vectors $\mathbf{v_1}$ and $\mathbf{v_2}$ form a parallelogram. Find its area.
- (c) Find a single unit vector ${\bf w}$ that is simultaneously perpendicular to ${\bf v_1}$ and ${\bf v_2}.$