Math 3330 - Test 1.1

Name:____

No calculators and show all work.

1. Define the function parmaterically: $x = 2\cos(3t^2)$ and $y = 3\sin(3t^2)$. Find the equation of the tangent line at $t = \sqrt{\pi/4}$. 2. Find the arclenth from t=0 to t=3 for the function given paramtrically as: $x=\cos(e^{2t})$ and $y=\sin(e^{2t})$ 3. Graph the function $r = 2 + \sin(\theta)$.

4. Find the area inside $r = \sqrt{2+\theta}$ from $\theta = \pi/2$ to $\theta = 3\pi/2$.

5. Graph the equation $1 = \frac{z^2}{3} + \frac{x^2}{4}$ in \mathbb{R}^2 and in \mathbb{R}^3 .

6. Prove $(\mathbf{v} \cdot \mathbf{w})^2 + (\mathbf{v} \times \mathbf{w})^2 = \|\mathbf{v}\|^2 \|\mathbf{w}\|^2$

- 7. Do the following.
 - (a) Find a parametric equation for the circle $x^2 + y^2 = 8$.

(b) Let $\mathbf{v_1} = \langle 1, 1, 2 \rangle$ and $\mathbf{v_2} = \langle 1, -3, 7 \rangle$. The vectors $\mathbf{v_1}$ and $\mathbf{v_2}$ form a parallelogram. Find its area.

- 8. Define the points P(1,0,1), Q(1,-1,0) and R(11,2,-1).
 - (a) Find the equation of the plane through the points P, Q and R.
 - (b) Find the angle between the planes x = y z and x + 2y = 7.
 - (c) Find the equation of a line contained within the plane x = y z.

9. For the equation $z^2 = x^2 + y^2$ produce the level curves for z = -1, 0, 1, 2and the level curve for x = 0. And then graph the equation in \mathbb{R}^3 . Is your graph a function?