Math 3330 - Last Review

1 Polar

- 1. $\int_0^{\pi/2} \int_{-\theta}^{2\theta} e^{\theta^2} dr d\theta$
- 2. $\iint_R e^{x^2 + y^2} dA$ where the *R* is the region inside the circle $x^2 + y^2 = 4$.
- 3. $\iint_{R} \frac{\ln(x^2 + y^2)}{x^2 + y^2} dA$ where the *R* is the region in the third quadrant between the circles $x^2 + y^2 = 9$ and $x^2 + y^2 = 16$.
- 4. $\iint_{R} \frac{\sqrt{x^2 + y^2}}{\tan^{-1}(\frac{y}{x})} dA$ where the *R* is the region in the above the lines y = x and y = -x and inside the circle $x^2 + y^2 = 4$.
- 5. $\iint_R \frac{1}{x^2 + y^2} dA$ where the *R* is the region in the first quadrant and inside the graph of $\sqrt{x^2 + y^2} = 1 + \cos(\tan^{-1}(\frac{y}{x})).$
- 6. $\iint_R \sqrt{x^2 + y^2} \, dA$ where the *R* is the region in the circles $x^2 + (y-1)^2 = 1$ and $(x-1)^2 + y^2 = 1$.

2 Line Integrals

2.1 dx or dy or ds

- 7. $\int_C x y dx$ where C is the part of the parabola $y = 2x^2$ starting at (-1, 2) and ending at (2, 8).
- 8. $\int_C x y dy$ where C is the line segment from the point (1,3) to the point (2,8).
- 9. $\int_C x y ds$ where C is the line segment starting at (1, -1) and ending at (2, 2).
- 10. $\int_C x y ds$ where C is the part of the circle $x^2 + y^2 = 9$ starting at (0,3) traveling counter-clockwise and ending at (0,-3).

2.2 dr

- 11. $\int_C \langle x+1, y-2x \rangle \cdot d\mathbf{r}$ where C is given by $\mathbf{r}(t) = \langle 2-t^2, 3t+1 \rangle$ and $0 \le t \le 4$.
- 12. $\oint_C \langle x y, x \rangle \cdot d\mathbf{r}$ where C is entire circle $x^2 + y^2 = 4$.
- 13. $\oint_C \langle \rangle \cdot d\mathbf{r}$ where C is the outside of the triangle PQR with points P(0,0), Q(1,1) and R(-2,1). For this problem travel clockwise.

3 Grene's Theorem

- 14. Compute the following line integrals. You may need Green's Theorem or maybe Green's Theorem is not possibule to use.
 - (a) $\oint_C \langle e^{x^2} + y^2, e^{y^2} 2x \rangle \cdot d\mathbf{r}$ where *C* is the outside of the triangle traveling counter-clockwise going thresh the points (1,2), (1,5), (-1,-1) and then returning to (1,2).
 - (b) $\oint_C \langle x + y^2, y 2x \rangle \cdot d\mathbf{r}$ where *C* is the entire circle $x^2 + y^2 = 2$ starting at $(0, \sqrt{2})$ traveling counter-clockwise.
 - (c) $\oint_C \langle \cos(x^2) y, y 2x \rangle \cdot d\mathbf{r}$ where *C* is the part of the parabola $y^2 = x$ starting at (1, -1) and ending at (1, 1) and then traveling along the line segment from (1, 1) to (1, -1).
 - (d) $\int_C \langle 1, x 2y \rangle \cdot d\mathbf{r}$ where C is the part of the parabola $y^2 = x$ starting at (1, -1) and ending at (1, 1).