Math 3330 - Quiz 6

Name:

- 1. Set up the integral to compute the volume below the function $f(x, y) = 7 x^2 y^2$ and above the xy-plane. This problem is from last section now that you know polar double integarls using polar, you can compute this. So for this quiz set up and compute.
- 2. Compute $\iint_R \frac{1}{\arctan y/x} dA$ where R is inside the circle $x^2 + y^2 = 4$ and outside the circle $x^2 + y^2 = 1$ in the third quadrant.
- 3. Compute $\iint_R \frac{y}{\sqrt{x^2+y^2}} dA$ where R is inside the circle $(x-1)^2 + y^2 = 1$ in the first quadrant.
- 4. Compute $\iint_{R} e^{-x^2-y^2} dA$ where R is the first quadrant.
- 5. Compute the following line integrals
 - (a) $\int_C x y ds$ where C is the line segment starting at (1, -1) and ending at (2, 2).
 - (b) $\int_C x y dx$ where C is the part of the parabola $y = 2x^2$ starting at (-1, 2) and ending at (2, 8).
 - (c) $\int_C x y ds$ where C is the part of the circle $x^2 + y^2 = 9$ starting at (0, 3) traveling counter-clockwise and ending at (0, -3).
 - (d) $\int_C \langle x+1, y-2x \rangle \cdot d\mathbf{r}$ where C is given by $\mathbf{r}(t) = \langle 2-t^2, 3t+1 \rangle$ and $0 \le t \le 4$.
- 6. Compute the following line integrals. You may need Green's Theorem or maybe Green's Theorem is not possibule to use.
 - (a) $\oint_C \langle e^{x^2} + y^2, e^{y^2} 2x \rangle \cdot d\mathbf{r}$ where *C* is the outside of the triagle traveling counter-clockwise going thresh the points (1, 2), (1, 5), (-1, -1) and then returning to (1, 2).
 - (b) $\oint_C \langle x + y^2, y 2x \rangle \cdot d\mathbf{r}$ where *C* is the entire circle $x^2 + y^2 = 2$ starting at $(0, \sqrt{2})$ traveling counter-clockwise.
 - (c) $\oint_C \langle \cos(x^2) y, y 2x \rangle \cdot d\mathbf{r}$ where *C* is the part of the parabola $y^2 = x$ starting at (1, -1) and ending at (1, 1) and then traveling along the line segment from (1, 1) to (1, -1).
 - (d) $\int_C \langle 1, x 2y \rangle \cdot d\mathbf{r}$ where C is the part of the parabola $y^2 = x$ starting at (1, -1) and ending at (1, 1).