Name:

- 1. Find a vector valued function for each of the functions below.
 - (a) The line from (1,3) to (-2,1).
 - (b) The ellipse $\frac{x^2}{4} + \frac{y^2}{7} = 1$.
 - (c) The circle of radius 4 centered at the point (1, -3).
- 2. Let $\mathbf{r}(t) = \langle 4t, t^2 1 \rangle$.
 - (a) Graph $\mathbf{r}(t)$.
 - (b) Compute the tangent line to $\mathbf{r}(t)$ at the point t = 3, and add this tangent line to your graph.
- 3. Let $\mathbf{r}(t) = \langle e^{-t} \cos(3t), e^{-t} \sin(3t) \rangle$.
 - (a) Graph $\mathbf{r}(t)$.
 - (b) Compute the tangent line to $\mathbf{r}(t)$ at the point $t = \pi/2$, and add this tangent line to your graph.
 - (c) Compute $\lim_{t\to\infty} \mathbf{r}(t)$.
 - (d) Compute the arc length $\mathbf{r}(t)$ from t = 0 to $t = \infty$.
- 4. Graph $z = 2x^2 + y^2$. Does this graph represent a function of x and y? Why or why not?
- 5. Graph $z^2 = x^2 + y^2$. Does this graph represent a function of x and y? Why or why not?
- 6. Compute all of the first order and second order partial derivatives for $f(x, y) = \sin(3x) + y^3(x^2 + 2y) 2y$. That is, compute $f_x(x, y)$, $f_y(x, y)$, $f_{xx}(x, y)$, $f_{yy}(x, y)$, $f_{yx}(x, y)$ and $f_{xy}(x, y)$.
- 7. Compute all of the first order and second order partial derivatives for $f(x,y) = e^{x^2-y^3}$. that is, compute $f_x(x,y)$, $f_y(x,y)$, $f_{xx}(x,y)$, $f_{yy}(x,y)$, $f_y(x,y)$ and $f_{xy}(x,y)$.