Name:

- 1. Graph the following:
 - (a) $z = x^2$ in \mathbb{R}^3 remember first graph in \mathbb{R}^2 then in \mathbb{R}^3 . Your answer should include both graphs.
 - (b) $\frac{z^2}{4} y^2 = 16$ make certain to label points of intersection on the z-axis and the y-axis.
 - (c) $x^2 + y^2 + (z 4)^2 = 2$.
- 2. Find the vector $\mathbf{v} \in \mathbb{R}^2$ so that \mathbf{v} is 3-units long and if its initial point is the origin, \mathbf{v} makes a 135% angle with the x-axis.
- 3. Let $\mathbf{v} \in \mathbb{R}^3$ so $\mathbf{w} = \langle 1, 2, 3 \rangle$ that $2\mathbf{v} + \mathbf{w} = 3\mathbf{v}$. Compute the norm of $\|\mathbf{v}\|$.
- 4. Find a vectors so that
 - (a) parallel to y = x + 2 and is one unit long (in \mathbb{R}^2)
 - (b) perpendicular to y = x + 2 and is one unit long (in \mathbb{R}^2)
 - (c) parallel to z-axis and is three units long (in \mathbb{R}^3)
 - (d) has initial point P(1,2,3,4) and final point Q(2,-1,0,-1). (in \mathbb{R}^4)
 - (e) parallel to xz-plane and is two units long (in \mathbb{R}^3)
 - (f) perpendicular to xz-plane and is two units long (in \mathbb{R}^3)
- 5. Let $\mathbf{v_1}, \mathbf{v_2} \in \mathbb{R}^3$ so $\mathbf{v_1} = \langle 1, 2, 3 \rangle$ and $\mathbf{v_2} = \langle 2, -1, 1 \rangle$. Find c_1 and c_2 so that

$$c_1\mathbf{v_1} + c_2\mathbf{v_2} = \langle 1, -7, -3 \rangle.$$

- 6. Let $\mathbf{v_1}$, $\mathbf{v_2}$ and $\mathbf{v_3} \in \mathbb{R}^3$ so $\mathbf{v_1} = \langle 1, 2, 3 \rangle \mathbf{v_2} = \langle 2, -1, 1 \rangle$ and $\mathbf{v_3} = \langle 4, -3, 7 \rangle$.
 - (a) Find angle between $\mathbf{v_1}$ and $\mathbf{v_2}$.
 - (b) Compute $\frac{1}{\|\mathbf{v_1}\|^2}(\mathbf{v_1} \cdot \mathbf{v_1})\mathbf{v_1}$.
 - (c) Find three different unit vectors perpendicular to $\mathbf{v_1}$.
 - (d) Find \mathbf{u} a unit vector parallel to $\mathbf{v_3}$.
 - (e) Compute $\mathbf{u} \cdot \mathbf{v_3}$ and compute $\|\mathbf{v_3}\|$.

- 7. Prove $\mathbf{v} \cdot \mathbf{v} = \|\mathbf{v}\|^2$.
- 8. Prove $\|\mathbf{v} + \mathbf{w}\|^2 + \|\mathbf{v} \mathbf{w}\|^2 = 2\|\mathbf{v}\|^2 + 2\|\mathbf{w}\|^2$.
- 9. Find the work done by a force given by $\mathbf{F} = 4i 6j + k$ that is applied to a point that moves from P(1, 2, 3) to Q(2, -1, 3).
- 10. Let $\mathbf{v_1}$, $\mathbf{v_2}$ and $\mathbf{v_3} \in \mathbb{R}^3$ so $\mathbf{v_1} = \langle 1, 2, 3 \rangle \mathbf{v_2} = \langle 2, -1, 1 \rangle$ and $\mathbf{v_3} = \langle 4, -3, 7 \rangle$.
 - (a) Compute $\mathbf{v_1} \times \mathbf{v_2}$.
 - (b) Compute the area of the parallelogram formed by the two vectors $\langle 2, -1 \rangle$ and $\langle 4, -3 \rangle$. Also draw the vectors and the parallelogram.
 - (c) Compute the volume of a parallelapiped formed by the three vectors $\mathbf{v_1}$, $\mathbf{v_2}$ and $\mathbf{v_3}$.
 - (d) Find a single unit vector \mathbf{w} that is simultaneously perpendicular to $\mathbf{v_1}$ and $\mathbf{v_2}$.
 - (e) Show that any vector of the form $\langle a 3b, a, b a \rangle$ where $a, b \in \mathbb{R}$ is perpendicular to $\mathbf{v_1}$.