Name:

- 10.1: 11,38,47,65
- 10.2: 38,39,68
- 10.3: 7,21,24,35
- 10.4: 3,9,12
- 10.1: 11,38,47,65

11. Sketch the curve and indicate the increasing direction of t for

$$x = 2\sin^2(t) \qquad \qquad y = 3\cos^2(t)$$

38. Find the parametric equtions for the rectangle, starting at the point $(\frac{1}{2}, \frac{1}{2})$ then traveling counter clockwise through the remaining points $(-\frac{1}{2}, \frac{1}{2})$, $(-\frac{1}{2}, -\frac{1}{2})$, $(\frac{1}{2}, -\frac{1}{2})$ an then back to $(\frac{1}{2}, \frac{1}{2})$. Hint you should make each edge a separate parametric equation. So equation 1 should be the kline from $(\frac{1}{2}, \frac{1}{2})$ to $(-\frac{1}{2}, \frac{1}{2})$.

47. Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ for

 $x = \sec(t)$ $y = \tan(t)$

65. Find the arc length for the function over the interval $x = t^2$ and $y = \frac{1}{3}t^3$ where $0 \le t \le 1$.

- 38. Graph: $r^2 = \cos(2\theta)$
- 39. Graph: $r^2 = 16\cos(2\theta)$
- 68. Show if A and B are not both zero then

$$r = A\cos(\theta) + B\sin(\theta)$$

is a circle. Find its radius.

10.3: 7,21,24,35

7. Find $\frac{dy}{dx}$ for $r = 2 + 2\sin(\theta)$.

21. Calculate the arc length for the entire cardiod: $r = a(1 - \cos(\theta))$

24. Sketch the spiral $r = e^{-\theta/8}$ where $0 \le \theta \le \infty$. Then calculate its entire arclength.

35. Find the area of the region in the first quadrant betweeen the two graphs $r = \sqrt{\cos(2\theta)}$ and $r = 2\cos(\theta)$.

10.4: 3,9,12

3. Graph the two parabolas

(a)
$$y^2 = 4x$$

(b)
$$x^2 = -8y$$

9. Graph the two elipses

- (a) $(x+3)^2 + 4(y-5)^2 = 16$
- (b) $\frac{1}{4}x^2 + \frac{1}{9}(y+2)^2 1 = 0$

12. Graph the two hyperbolas

(a)
$$\frac{x^2}{16} - \frac{y^2}{9} = 1$$

(b)
$$9y^2 - x^2 = 36$$