Math 6250: Test 2

Name:

- 1. For the following sets in (\mathbb{R}, e) , the reals with the usual metric, compute the boundary, the closure and the interior of the given set. Also determine if the set is open, closed, both or neither.
 - (a) $A = \mathbb{Q}$
 - (b) B = (0, 1)
 - (c) C = [-2, 17]
 - (d) $D = \{\frac{1}{n} : n \in \mathbb{N}\}$
 - (e) $E = [0, \infty) \setminus \mathbb{N}$
 - (f) The Cantor set
- 2. Consider the following metric spaces. Determine if the metric space is complete. An explanation of your answer is necessary.
 - (a) \mathbb{R} with usual metric
 - (b) \mathbb{Q} with usual metric
 - (c) N with metric $d(n,m) = \left|\frac{1}{n} \frac{1}{m}\right|$
 - (d) $\widetilde{\mathbb{N}}$ as in class.
 - (e) $X = \{\frac{1}{n} : n \in \mathbb{N}\}$
 - (f) C[0,1] with the metric $d_1(f,g) = \int_0^1 |f-g| dx$
 - (g) C[0,1] with the metric $d_{\infty}(f,g) = \max |f(x) g(x)|$
- 3. Prove the following: Let (X, d) be a complete metric space so that $diam(X) < \infty$. Assume $f: X \to X$ is contractive. Show that there exists a unique point $x \in X$ so that f(x) = x. We will call this point the fixed point of f in X.
- 4. Consider $([0, \infty), d)$ the non-negative real numbers with the usual metric. Find a function $f : X \to X$ where f is contractive and does not have a fixed point. Explain your answer.
- 5. Consider the function $f: [0,1] \to [0,1]$ where $f(x) = 1 x^3$.
 - (a) Is f contractive? Prove or disprove.
 - (b) Does f have a fixed point? If so find it. If not provide a proof.

- 6. Find a function $f: (0,1] \to (0,1]$ where f is continuous and f does not have fixed point.
- 7. Consider (\mathbb{N}, d) where $d(n, m) = |\frac{1}{n} \frac{1}{m}|$ as previously discussed. Find a function $f: X \to X$ where f is contractive and does not have a fixed point. Explain your answer.
- 8. Let $X = C^{\infty}[0, 1]$ be the functions with infinitely many continuous derivatives with metric

$$d(f,g) = \int_0^1 |f - g| dx.$$

- (a) Define $D: X \to X$ by D(f(x)) = f'(x). Does D have a nonzero fixed point? If so find it.
- (b) Define $D: X \to X$ by D(f(x)) = f''(x) + 2f(x). Does D have a nonzero fixed point? If so find it.