Math 4100 Practice Test 1

- 1. Understand the quizzes plus these problems ...
- 2. Use the division algorithm to show
 - The square of any number is of the form 3k or 3k + 1.
 - The fourth power of any number is of the form 5k or 5k + 1.
- 3. Prove the following where $a, b, c \in \mathbb{Z}$. If a|b and a|c then $a^2|bc$.
- 4. Prove for $n \in \mathbb{N}$ (using induction) that
 - $15|2^{4n}-1$.
 - $5|3^{3n+1}+2^{n+1}$.
- 5. The product of four consequetive integers is 1 less than a perfect square.
- 6. Use the Euclidean algorithm to obtain integer solutions for x and y.
 - gcd(119, 272) = 119x + 272y
 - gcd(1769, 2378) = 1769x + 2378y
- 7. Deterimine all solutions to the Diophantine equations
 - 18x + 5y = 48
 - 54x + 21y = 906
 - 123x + 360y = 99
- 8. Solve the following Chinese Remainder Theorem problems.
 - $x \equiv 3 \mod 5$
 - $2x \equiv 3 \mod 7$
 - $6x \equiv 3 \mod 11$
 - Problem 4.4.8
- 9. Compute $\tau(1001)$, $\tau(5040)$ and $\tau(36000)$. Compute $\sigma(1001)$, $\sigma(5040)$ and $\sigma(36000)$. Compute $\phi(1001)$, $\phi(5040)$ and $\phi(36000)$.
- 10. Verify $\phi(n) = \phi(n+1) = \phi(n+2)$ where n = 5186.
- 11. Prove if n is odd then $\phi(2n) = \phi(n)$

- 12. Prove if n is even then $\phi(2n) = 2\phi(n)$
- 13. Prove $\phi(3n) = 3\phi(n)$ if and only if 3|n.
- 14. Use Euler's Theorem to establish
 - (a) For $a \in \mathbb{Z}$ with gcd(a, 1729) = 1 we have $a^{36} = 1 \mod 1729$. Hint 1729 = (7)(13)(19).
 - (b) That $51|10^{32n+9} 7$.
 - (c) For any two relatively prime integers m and n we have $m^{\phi(n)} + n^{\phi(m)} = 1 \mod (mn)$.
 - (d) Find the units digits of 3^{100} or the units digits of 3^{407} .
- 15. Find the order of the integers 2,3 and 5
 - (a) modulo 17
 - (b) modulo 19
 - (c) modulo 23
- 16. Prove
 - (a) If a has order hk modulo n then a^h has order k modulo n.
 - (b) If a has order $2k \mod p$, an odd prime, then $a^k = -1 \mod p$.
 - (c) If a has order 3 modulo p, where p is an odd prime then $(a+1)^6 = 1 \mod p$. [Hint note $a^2 + a + 1 = 0 \mod p$ thus $(a+1)^2 = a \mod p$].
- 17. Plus problems 6.1.7, 7.2.4, 7.2.5, 7.2.10