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VQUICK CHECK EXERCISES 10.1

(See page 705 for answers.)

1. Find parametric equations for a circle of radius.l centered
at (3, 5).

2. The graph of the curve described by the parametric equa-
tions x =4t — 1, y = 3t + 2 is a straight line with slope

and y-intercept

3. Suppose that a parametric curve C is given by the equations
x=f(t),y=g(t) for 0 <t = 1. Find parametric equa-
tions for C that reverse the direction the curve is traced as
the parameter increases from 0 to 1.

EXERCISE SET 10.1 B Graphing utility  [€] cas

4. To find dy/dx directly from the parametric equatios
x=fl), y=g)

we can use the formula dy/dx =

5. Let L be the length of the curve
S = T

An integral expression for L is

1. (a) By eliminating the parameter, sketch the trajectory over
the time interval 0 < ¢ < 5 of the particle whose para-
metric equations of motion are

x=t—1, y=f+]

Johann (left) and Jakob (righty Bernoulli Members
of an amazing Swiss family that included several gen-
erations of outstanding mathematicians and scientists.
Nikolaus Bernoulli (1623-1708), a druggist, fled from
Antwerp to escape religious persecution and ultimately
settled in Basel, Switzerland. There he had three sons,
Ja.koh I (also called Jacques or James), Nikolaus, and Johann I (also
called Jean or John). The Roman numerals are used to distinguish
family members with identical names (see the family tree below).
Following Newton and Leibniz, the Bernoulli brothers, Jakob I and
Johann I, are considered by some to be the two most important
founders of calculus. Jakob I was self-taught in mathematics. His
father wanted him to study for the ministry, but he turned to math-
ematics and in 1686 became a professor at the University of Basel.
When he started working in mathematics, he knew nothing of New-
ton’s and Leibniz’ work. He eventually became familiar with New-
ton’s results, but because so little of Leibniz’ work was published,
Jakob duplicated many of Leibniz’ results.

Jakob’s younger brother Johann I was urged to enter into business
by his father. Instead, he turned to medicine and studied mathemat-
ics under the guidance of his older brother. He eventually became
a mathematics professor at Gréningen in Holland, and then, when
Jakob died in 1705, Johann succeeded him as mathematics profes-
sor at Basel. Throughout their lives, Jakob I and Johann I had a
mutual passion for criticizing each other’s work, which frequently
erupted into ugly confrontations. Leibniz tried to mediate the dis-
putes, but Jakob, who resented Leibniz’ superior intellect, accused
him of siding with Johann, and thus Leibniz became entangled in
the arguments. The brothers often worked on common problems
that they posed as challenges to one another. Johann, interested
in gaining fame, often used unscrupulous means to make himself
appear the originator of his brother’s results; Jakob occasionally re-
taliated. Thus, it is often difficult to determine who deserves credit
for many results. However, both men made major contributions

(b) Indicate the direction of motion on your sketch

(c) Make a table of x- and y-coordinates of the pa=m
timesz =0,1,2,3,4,5.

(d) Mark the position of the particle on the curve at te
in part (c), and label those positions with the vais

to the development of calculus. In addition to his work o= &
lus, Jakob helped establish fundamental principles in proses
including the Law of Large Numbers, which is a cornersim
modern probability theory.

Among the other members of the Bernoulli family, Dz
of Johann [, is the most famous. He was a professor of mathes
at St. Petersburg Academy in Russia and subsequently a peoi
of anatomy and then physics at Basel. He did work in calceis
probability, but is best known for his work in physics. A bass
of fluid flow, called Bernoulli’s principle, is named in his homs
won the annual prize of the French Academy 10 times for wu
vibrating strings, tides of the sea, and kinetic theory of gasss

Johann II succeeded his father as professor of mathemam
Basel. His research was on the theory of heat and sound. a3
I was a mathematician and law scholar who worked on pross
and series. On the recommendation of Leibniz, he was sz
professor of mathematics at Padua and then went to Bass
professor of logic and then law. Nikolaus I1 was professar 8
risprudence in Switzerland and then professor of mathemascy
Petersburg Academy. Johann III was a professor of mathes
and astronomy in Berlin and Jakob II succeeded his uncie T3
as professor of mathematics at St. Petersburg Academy = #3
Truly an incredible family! '

Nikolaus Bernoulli
{1623=1708)

I ™
Jakobl  Nikolaus Johann |

(1654-1705) (1667-1748)
(Jacques, James) (Jean, John)
| : | 1
Nikolaus 1 Nikolaus IT Daniel Johann 0

(1687-1759)  (1695-1726) (1700-1782)  (1710-17%

Johann 111 5
(1744-1807) (175
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» By eliminating the parameter, sketch the trajectory over
the time interval 0 < r < 1 of the particle whose para-
metric equations of motion are

x = cos(mwt), y = sin(mt)

% Indicate the direction of motion on your sketch.

- Make a table of x- and y-coordinates of the particle at
times f = 0, 0.25, 0.5, 0.75, 1.

& Mark the position of the particle on the curve at the times
in part (c), and label those positions with the values of 7.

- Skeich the curve by eliminating the parameter, and indi-
e direction of increasing . #

t=3r—4, y=6r+42

f=r—3, y=3-7 (0=t=<3
f=2cost, y=Ssint (0 =<t =<2n)

= /T, y=2r+4

f=3+2cost, y=2+4sint (0=t =2m)
=sect, y=tanr (7 <t <3m/2)
=cos2t, y=sint (—n/2=<t=<mn/2)
p=4 43, y=162-9

b= 2sin’1, y=3cos’t (0<t<nf2)
g=sec’s, y=tan’t (0<t <n/2)

Find parametric equations for the curve, and check your
zenerating the curve with a graphing utility. =

-

wwcle of radius 5, centered at the origin, oriented clock-

portion of the circle x* + y? = 1 that lies in the third
t, oriented counterclockwise.

wertical line intersecting the x-axis at x = 2, oriented

ellipse x2/4 + y%/9 = 1, oriented counterclockwise.
portion of the parabola x = y* joining (1, —1) and
* . oriented down to up.
circle of radius 4, centered at (1, —3), oriented coun-

wise. -
e a graphing utility to generate the trajectory of a par-
fcle whose equations of motion over the time interval
B<i<3S5are

x=6r—1, y=1+3

Mzke a table of x- and y-coordinates of the particle at
Emes: =0,1,2,3,4,5.
‘&2 what times is the particle on the y-axis?
During what time interval is y < 57
42 what time does the x-coordinate of the particle reach
& maximum?
U< a graphing utility to generate the trajectory of a
jpecer airplane whose equations of motion for ¢ = 0 are

x=1t—2sint, y=23—2cost

FOCUS ON CONCEPTS

23. In each part, match the parametric equation with one of

24, (a) Identify the orientation of the curves in Exercise 23.

(b) Assuming that the plane flies in a room in which the
floor is at y = 0, explain why the plane will not crash
into the floor. [For simplicity, ignore the physical size
of the plane by treating it as a particle.]

(¢) How high must the ceiling be to ensure that the plane
does not touch or crash into it?

B 21-22 Graph the equation using a graphing utility. =
21. (a) x =y +2y+1

(b) x=siny, —2r =y <2nm

2. (@ x=y+2y° -5

(b) x=tany, —w/2 <y <n/2

the curves labeled (I)—(V1), and explain your reasoning.
(@ x =4/t, y=sin3t (b) x =2cost, y =3sint
(c) x =tcost, y=1tsint

@ x = 3t B 312
ey A S T
{E)x: £

TEZ . 5w
(f) x = jcost, y =sin2t

¥ ¥ 3
X X
X
I 1 1

o

Ak @

v VI

A Figure Ex-23

(b) Explain why the parametric curve
x=12, y=t (-1=t=<1)

does not have a definite orientation.

25. (a) Suppose that the line segment from the point P (xo, o)

to Q(xy, y;) is represented parametrically by

x = xp + (x; — xo)t,
O=t=1
¥y = Yo+ — yo)t
and that R(x, y) is the point on the line segment corre-
sponding to a specified value of 1 (see the accompanying
figure on the next page). Show that t = r/q, where r
is the distance from P to R and g is the distance from

Pto Q. (cont.)
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26. Find parametric equations for the line segment joining 2 |
P(2,—1) and Q(3, 1), and use the result in Exercise 25 x=2, y=4& (0=r<3
to find x=2-2, y=2% (3=<t=

27.

(b) What value of ¢ produces the midpoint between points 35. Forthe parametriccurvex = x(t),y = 31* — 2"
P and Q7 ative of y with respect to x is computed by
(c) What value of ¢ produces the point that is three-fourths dy  124% — 612
of the way from P to Q7 T i T
36. The curve represented by the parametric equations

P(-T.g.. )"g)

< Figure Ex-25

(a) the midpoint between P and
(b) the point that is one-fourth of the way from P to Q
(c) the point that is three-fourths of the way from P to Q.

(a) Show that the line segment joining the points (xp, ¥p)
and (x;, y;) can be represented parametrically as

=1 § 1
Py - 0 edge, and so forth.]
I —1Ip AY
(=1 =1) 11 11
o g (3. 3) (3. 2)
y =Yo+ (3 — yo) T
B = I

(b) Which way is the line segment oriented?
(c) Find parametric equations for the line segment traced

5573

y=t+1°
is concave down for ¢ < 0.

x=r3, (—o <t <4=

Parametric curves can be defined piecewise by
ent formulas for different values of the parames=
the curve that is represented piecewise by the
equations

Find parameu:ic equations for the rectangle in me
panying figure, assuming that the rectangle is
terclockwise as f varies from ( to 1, starting at | =
t = 0. [Hint: Represent the rectangle pie::ewi:ih
vary from 0 to } for the first edge, from § to £ f

from (3, —1) to (1, 4) as ¢ varies from 1 to 2, and check
your result with a graphing utility.
28. (a) By eliminating the parameter, show that if a and ¢ are
not both zero, then the graph of the parametric equations (_% ; _%] 1-1
x=at+b, y=ct+d (g<t=<n) < Figure Ex-3%
is a line segment. ) 4 39. (a) Find parametric equations for the ellipse
(b) Sketch the parametric curve at the origin and has intercepts (4, 0), (—&
x=2—=1, y=t+1 I=r=<2) and (0, —3).

and indicate its orientation.

(c) What can you say about the line in part (a) if @ or ¢ (but
not both) is zero?

(d) What do the equations represent if @ and ¢ are both zero?

[ 29-32 Use a graphing utility and parametric equations to dis-

play the graphs of f and f~' on the same screen. &

(b) Find parametric equations for the ellipse
translating the ellipse in part (a) so that =
(-1,2).

(c) Confirm your results in parts (a) and (b)
ing utility.

We will show later in the text that if a projectile =

ground level with an initial speed of vy meters

29, fx)=x3+02x-1, -1<x<?2
30. f(x) =vxT+2+4x, -5<x<5
31. f(x) =cos(cos0.5x), O0<x <3
32, fx)=x+sinx, 0<x=<6

at an angle o with the horizontal, and if air
neglected, then its position after ¢ seconds,
coordinate system in the accompanying figure
page is
x = (vpcosa)r,
where g =~ 9.8 m/s2.
(a) By eliminating the parameter, show thar me
lies on the graph of a quadratic polynomiat
(b) Use a graphing utility to sketch the trajectors
and vy = 1000 m/s.
(c) Using the trajectory in part (b), how high
rise?

y = (vpsine)r — 3
33-36 True-False Determine whether the statement is true or
false. Explain your answer. ™

33. The equation y = 1 — x* can be described parametrically
by x =sinr, y = cos® 1.

34. The graph of the parametric equations x = f(1), y =1 is
the reflection of the graph of y = f(x) about the x-axis.



Lsing the trajectory in part (b), how far does the shell
wavel horizontally?

2

<1 Figure Ex-40

Find the slope of the tangent line to the parametric
curve x =1/2, y=1*+latt=—landatt =1
without eliminating the parameter.

Check your answers in part (a) by eliminating the
parameter and differentiating an appropriate func-
@on of x.

Find the slope of the tangent line to the paramet-
ric curve x = 3cost, y =4sint at 7 = xr/4 and at
: = Tn/4 without eliminating the parameter.
Check your answers in part (a) by eliminating the
parameter and differentiating an appropriate func-
tion of x.

the parametric curve in Exercise 41, make a conjec-
about the sign of d*y/dx® att = —1 andatt = 1,
* confirm your conjecture without eliminating the pa-

the parametric curve in Exercise 42, make a con-
about the sign of d*y/dx* at t = 7/4 and at
|= 77/4, and confirm your conjecture without elim- .
peuning the parameter.

Find dy/dx and d® y/dx? at the given point without elim-
e parameter.

=1 y=21+41=1

—'3:1+1, y=§r3—r; =2

=sect, y=tant; t = x/3

=sinh¢, y =cosht; t=0

=8 +cosf, y=1+sinb; 0 =n/6

—cos¢, y=13sing; ¢ =51/6

Find the equation of the tangent line to the curve
he—tel b

2 1 = | without eliminating the parameter.
Find the equation of the tangent line in part (a) by elim-
mating the parameter.

Find the equation of the tangent line to the curve
x=2+4, y=82-2t+4

y:f_’_

@ r = | without eliminating the parameter.
Find the equation of the tangent line in part (a) by elim-
mating the parameter.
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55-54 Find all values of ¢ at which the parametric curve has
(a) a horizontal tangent line and (b) a vertical tangent line. =
53, x = 2sint, y=4cost (0 <t <2m)

54, x =203 — 152+ 24t +7, y=12+1t+1

B4 55. In the mid-1850s the French physicist Jules Antoine Lis-

sajous (1822-1880) became interested in parametric equa-
tions of the form

x =sinat, y=sinbt

in the course of studying vibrations that combine two per-

pendicular sinusoidal motions. If a/b is a rational number,

then the combined effect of the oscillations is a periodic
motion along a path called a Lissajous curve.

(a) Use a graphing utility to generate the complete graph
of the Lissajous curves correspondingtoa = 1, b = 2;
a=2b=3a=3b=4anda=4,b=35.

(b) The Lissajous curve

x =sint, y=sin2t 0=<t<2nm)

crosses itself at the origin (see Figure Ex-55). Find
equations for the two tangent lines at the origin.

56. The prolate cycloid

x=2—mcost, y=2t—msint (—r<t=<m

crosses itself at a point on the x-axis (see the accompany-
ing figure). Find equations for the two tangent lines at that
point.

A Figure Ex-55

57. Show that the curve x = ¢2, y = 1* — 4t intersects itself at
the point (4, 0), and find equations for the two tangent lines
to the curve at the point of intersection.

A Figure Ex-56

58. Show that the curve with parametric equations
x=02-3+5 y=£2+2-10t4+9

intersects itself at the point (3, 1), and find equations for the
two tangent lines to the curve at the point of intersection.

4 59. (a) Usea graphing utility to generate the graph of the para-

metric curve

x=cos’t, y=sin't 0<t<2m

and make a conjecture about the values of r at which
singular points occur.

(b) Confirm your conjecture in part (a) by calculating ap-
propriate derivatives.

60. Verify that the cycloid described by Formula (10) has cusps

at its x-intercepts and horizontal tangent lines at midpoints
between adjacent x-intercepts (see Figure 10.1.14).
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61. (a) What is the slope of the tangent line at time ¢ to the
trajectory of the paper airplane in Example 57
(b) What was the airplane’s approximate angle of inclina-
tion when it crashed into the wall?
62. Suppose that a bee follows the trajectory
x=1t—2cost, y=2-—2sint 0=<r=<10)
(a) At what times was the bee flying horizontally?
(b) At what times was the bee flying vertically?

63. Consider the family of curves described by the parametric
equations

x=acost+h, y=bsint+k (0<t <2m)

where a # 0 and b # 0. Describe the curves in this family
if
(a) h and k are fixed but a and b can vary
(b) a and b are fixed but & and k can vary
(c) a=1landb=1,but hand k vary sothath = k + 1.
F 64. (a) Use a graphing utility to study how the curves in the
family

x=2acos’t, y=2acostsint (=2 <t <2m)

change as a varies from O to 5.
(b) Confirm your conclusion algebraically.
(c) Write a brief paragraph that describes your findings.

65-70 Find the exact arc length of the curve over the stated
interval. ™

65 x = =4t ==

66. x=1-2, y=2 (1<r<16)

67. x=cos3t, y=sin3t (O<r<m

68. x =sinf 4+ cost, y=sint —cost (0<t=<m

69. x = ¢ (sint +cost), y = e¥(sint —cost) (-1 <t <1)
70. x=2sin""'t, y=In(1 -1} (0<r<})

[€] 71. (a) Use Formula (9) to show that the length L of one arch
of a cycloid is given by

2m
L= af v 2(1 —cos8) do
0

(b) UseaCAS toshow that L is eight times the radius of the
wheel that generates the cycloid (see the accompanying

figure).

< Figure Ex-71

72. Use the parametric equations in Formula (10) to verify that
the cycloid provides one solution to the differential equation

(e

where a is a positive constant.

| ]

FOCUS ON CONCEPTS

B 73. The amusement park rides illustrated in the
nying figure consist of two connected rotating
length 1—an inner arm that rotates coun

: at 1 radian per second and an outer arm tha
: programmed to rotate either clockwise at 2
| second (the Scrambler ride) or counterclockwiss
dians per second (the Calypso ride). The cemie=
rider cage is at the end of the outer arm.
(a) Show that in the Scrambler ride the cemie
cage has parametric equations '

x =cost+cos2t, y=sint—sa®

in the Calypso ride, and use a graphing
confirm that the center traces the curve
the accompanying figure.

(c) Do you think that a rider travels the same
in one revolution of the Scrambler ride ==

(b) Find parametric equations for the center of 5

revolution of the Calypso ride? Justify »
clusion.

Ecram bler ride

A Figure Ex-73

FJ 74. (a) If a thread is unwound from a fixed circle
ing held taut (i.e., tangent to the circle.
end of the thread traces a curve called an &
of a circle. Show that if the circle is

the origin, has radius a, and the end of the
initially at the point (a, 0), then the involwe
expressed parametrically as

y = a(sinf — -d

where  is the angle shown in part (a) of l:h:ﬂ
panying figure on the next page.

(b) Assuming that the dog in part (b) of the
ing figure on the next page unwinds its leass.
keeping it taut, for what values of # in the :
0 < 8 < 2x will the dog be walking North
East? West?

(c) Use a graphing utility to generate the cur-\tq

x =alcos® + Hsind),

by the dog, and show that it is consistent
answer in part (b).




N

;/.‘:;9 o v /—Lﬂ -
wle? ekt

(a) (b)
Figure Ex-74

If f'(r) and g'(z) are continuous functions, and if no
of the curve

x=f@), y=gi (a<t=<bh)

more than once, then it can be shown that the area of
generated by revelving this curve about the x-axis is

E i
S=£2er (E) +(:i?) dt

area of the surface generated by revolving the curve
y-axis is

ivations are similar to those used to obtain Formulas
15) in Section 6.5.] Use the formulas above in these

bk CHECK ANSWERS 10.1

10.2 Polar Coordinates 705

75. Find the area of the surface generated by revolving x = 2,
¥ =3t (0 =t < 2) about the x-axis.

76. Find the area of the surface generated by revolving the curve
x=e'cost,y=e'sint (0 <t < 7/2) about the x-axis.

77. Find the area of the surface generated by revolving the curve
x =cos’t, y =sin’t (0 <1 < 7/2) about the y-axis.

78. Find the area of the surface generated by revolving x = 6¢,
y =41* (0 <t < 1) about the y-axis.

79. By revolving the semicircle

X =rcost, . y=rsmit O=<t=<mn)
about the x-axis, show that the surface area of a sphere of

radius r is 472,
80, The equations

x=a¢p—asing, y=a-—acos¢ 0=<¢<2m

represent one arch of a cycloid. Show that the surface area
generated by revolving this curve about the x-axis is given
by § = 64ma’/3.

81. Writing Consult appropriate reference works and write
an essay on American mathematician Nathaniel Bowditch
(1773-1838) and his investigation of Bowditch curves (bet-
ter known as Lissajous curves; see Exercise 55).

82. Writing What are some of the advantages of expressing a
curve parametrically rather than in the form y = f(x)?

S+ 2cost,y=5+2sint (0<t<2m

» (1/1)2 + cos t dt

x %; 275 3. x=fAd-1),y=g(l=0

dyldt _ g'(t)
Cdx/dt T f'(r)

l POLAR COORDINATES

Up to now we have specified the location of a point in the plane by means of coordinates
relative to two perpendicular coordinate axes. However, sometimes a moving point has a
special affinity for some fixed point, such as a planet moving in an orbit under the central
attraction of the Sun. In such cases, the path of the particle is best described by its
angular direction and its distance from the fixed point. In this section we will discuss a
new kind of coordinate system that is based on this idea.

B POLAR COORDINATE SYSTEMS

Apolar coordinate system in a plane consists of a fixed point O, called the pole (or origin),
and a ray emanating from the pole, called the polar axis. In such a coordinate system
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m/2 For this equality to hold, the quantity Snr must be an even multiple of 7; the sl

| r=2+cos

IS

1

A Figure 10.2.23

v QUICK CHECK EXERCISES 10.2

which this occurs is n = 2. Thus, the entire graph will be traced in two revolutias
means it can be generated from the parametric equations

x=[2+ms%]cus€, y=[2+cos%€]sin9 0<f <47

This yields the graph in Figure 10.2.23. <

(See pagé 719 for answers.)

1. (a) Rectangular coordinates of a point (x, y) may be recov-
ered from its polar coordinates (r, #) by means of the
equations x = and y =

(b) Polar coordinates (r, #) may be recovered from rect-
angular coordinates (x, y) by means of the equations
rP=_____ andtanf =

2. Find the rectangular coordinates of the points whose polar
coordinates are given.

(a) (4,7/3)
(c) (6, —2m/3)

(b) (2, —m/6)
(d) (4,57/4)

EXERCISE SET 10.2 B Graphing utility

3. In each part, find polar coordinates satisfying
conditions for the point whose rectangular cooss
(1,4/3).

(@ r=>0and 0 <6 <27
(b) r <0 and 0 <8 < 2m

4. In each part, state the name that describes thep
most precisely: arose, a line, acircle, a limagom. |
a spiral, a lemniscate, or none of these.
@r=1-86 ) r=1+2a

(c) r =sin26 (d) r = cos’ &
(e) r =csch ) r=2+2a
(g) r=—2sin6

1-2 Plot the points in polar coordinates. ®
1. (a) (3, n/4) (b) (5,2n/3) ©) (1,7/2)
(d) (4,77/6) (e) (—6,—m) (f) (=1,97/4)

2. (a) (2, —n/3) (®) (3/2, =Tx/4) (¢) (—3,37/2)
d) (=5.-7/6) (e) (2,4n/3) (f) (0, m)

3-4 Find the rectangular coordinates of the points whose polar
coordinates are given. ™

3. (a) (6,7/6) (b) (7,2n/3) (c) (—6, =57/6)

(d) (0, -m) (e) (7,17x/6) () (=5,0)
4. (a) (=2, 7/4) (b) (6, —7/4) (c) (4,97/4)
(d) (3,00 (e) (—4, =3n/2) (f) (0,3m)

5. Ineach part, a pointis given in rectangular coordinates. Find
two pairs of polar coordinates for the point, one pair satis-
fyingr > 0and 0 < @ < 2m, and the second pair satisfying
r>0and 27 <6 <0.

(@) (-5.0) (b) 2v3,-2) (© 0,-2)
(d) (-8.-8) @ (-3,3v3) () 4,1

6. In each part, find polar coordinates satisfying the stated

conditions for the point whose rectangular coordinates are

{_ﬁe 1]-

(a) r=>0and 0<8 <2m
(b) r<0and 0 <@ <2m
() r=0and —2r <8 <0
(d) r<0and —m<f=<m

7-8 Use a calculating utility, where needed, to appm
polar coordinates of the points whose rectangular ¢
are given. W
7. (a) 3.4)
8. (a) (—3.4)

(b) (6, —8)
(b) (-3,1.7)

(el G
(c) {l'.

9-10 Identify the curve by transforming the given
tion to rectangular coordinates. =

9. (@ r=2 (b) rsin@ =4
(¢) r =3cosf (d}r:}cos&_
10. (a) r = 5sech (b) r =2siné

(c) r =4cosf + 4sinf (d) r =secfian

11-12 Express the given equations in polar coords

1058 x =3 b) x>+ ="
() x* +y* +6y=0 (d) 9xy =4



b) X2 +y*=5
@ ¥*(x%+y?) =y

y=-3

B+ +4x =0

S ON CONCEPTS

A graph is given in a rectangular #r-coordinate sys-
Sketch the corresponding graph in polar coordinates.

Fiad an equation for the given polar graph. [Note: Nu-
=ls on these graphs represent distances to the origin. |

Circle Cardioid
(b)
;‘; j’
Limagon Circl Three-petal rose
3 (b) g (c)
3
1
Sour-petal rose Limagon Lemniscate
(b) (c) 4
Cardioid Five-petal rose Circle
the curve in polar coordinates. ™
? 2% =i %” 23, r=3
ros & 25. r = 6sind 26. r —2 = 2cosd

10.2 Polar Coordinates 717

27. r =3(1 +sinf)
29. r =4 —4cosf
3. r=—1—cosé
33 r=3—siné

28. r=5—35siné
30. r =1+2sin8
32. r =44 3cosf
34. r =3+ 4cosd

35. r—5=3sins 36. r=5—2cos8
37. r = =3 —4siné 38, r* =cos20

39, r2 = 165sin26 40. r=40 (B =0)
41. r=48 (#=<0) 42, r =460

43. r = =2cos20 44. r = 3sin26

45, r =9sin 46 46, r = 2c0s36

47-50 True-False Determine whether the statement is true or
false. Explain your answer. ™

47. The polar coordinate pairs (—1,7/3) and (1, —27/3) de-
scribe the same point.

48. If the graph of r = f(f) drawn in rectangular fr-
coordinates is symmetric about the r-axis, then the graph
of ¥ = f(@) drawn in polar coordinates is symmetric about
the x-axis.

49. The portion of the polar graph of » = sin 26 for values of 8
between 7/2 and 7 is contained in the second quadrant.

50. The graph of a dimpled limagon passes through the polar
origin.

[ 51-55 Determine a shortest parameter interval on which a com-
plete graph of the polar equation can be generated, and then use
a graphing utility to generate the polar graph. =

# L]
Sl r—cosi 52. r =sm5

] 2]
53.r=l—25inz 54.r=0.5+cos§

#
55. r =cos -

B 56. The accompanying figure shows the graph of the “butterfly
curve”

; [
r=e°“’""—2cos4ﬂ+sin3z

Determine a shortest parameter interval on which the com-
plete butterfly can be generated, and then check your answer
using a graphing utility.

< Figure Ex-56
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B 57. The accompanying figure shows the Archimedean spiral
r = 6/2 produced with a graphing calculator.
(a) What interval of values for & do you think was used to
generate the graph?
(b) Duplicate the graph with your own graphing utility.

(=9, 9] % [~6, 6]

xScl = 1, yScl =1 - Figure Ex-57

58. Find equations for the two families of circles in the accom-
panying figure.

m/2 mf2

| 1
A Figure Ex-58

59. (a) Show that if a varies, then the polar equation
r=asecl (—n/2<6<m/2)
describes a family of lines perpendicular to the polar
axis.
(b) Show that if b varies, then the polar equation

r=bcscd (0<@ <m

describes a family of lines parallel to the polar axis.

FOCUS ON CONCEPTS

60. The accompanying figure shows graphs of the Archi-
medean spiral r = 6 and the parabolic spiral r = V.
Which is which? Explain your reasoning.

a2 n2

I 11
A Figure Ex-60

61-62 A polar graph of r = f(#) is given over the
interval. Sketch the graph of

(@) r = f(—6)
(= f(6'+ g—)

61. 0<f <7/2
1

(b) r=f(9—§
@) r = —f@

62. /2 <0 <n

(1, m/4) (1, 3m/4)

A Figure Ex-61 A Figure Ex-62

63-64 Use the polar graph from the indicated e

sketch the graph of
(a) r= f(9)+1 (b) =2 figre=—
63. Exercise 61 64. Exercise 62

65. Show that if the polar graph of r = f(9) is
terclockwise around the origin through an angie
r = f(@ — a) is an equation for the rotated curve.
(ro. Bo) is any point on the original graph, then f==
is a point on the rotated graph.]

66. Use the result in Exercise 65 to find an equamem
lemniscate that results when the lemniscate in
rotated counterclockwise through an angle of = =

. Use the result in Exercise 65 to find an equas
cardioid r = 1 + cos @ after it has been rotated
given angle, and check your answer with a i

T T
(a) i (b) 3
(a) Show thatif A and B are not both zero. them
of the polar equation
r = Asinf + Bcos@

(c) m id) -i

is a circle. Find its radius.
(b) Derive Formulas (4) and (5) from the fi
part (a).
69. Find the highest point on the cardioid r = 1+
70. Find the leftmost point on the upper half of
r=1+cosf.
Show that in a polar coordinate system the
tween the points (r;, #) and (r2, 6,) is

d= J;f + r% = 2rracos(f) — 8

71.

72-74 Use the formula obtained in Exercise 71 1o
tance between the two points indicated in polar

72. (3, 7/6) and (2, 7/3)



10.3 Tangent Lines, Arc Length, and Area for Polar Curves

719

Sugcessive tips of the four-petal rose r = cos20. Check [ 76. Show that the hyperbolic spiral r =1/8 (8 > 0) has a

Sour answer using geometry.

Successive tips of the three-petal rose r = sin 36. Check
Sour answer using trigonometry.

"= the late seventeenth century the Italian astronomer Gio-
wamni Domenico Cassini (1625-1712) introduced the family
W curves

P+ +a?)? —b*—4a’x?=0 (@>0,b>0
‘= s studies of the relative motions of the Earth and the

Su= These curves, which are called Cassini ovals, have
of the three basic shapes shown in the accompanying

Show that if @ = b, then the polar equation of the
Cassini oval is r* = 2a® cos 26, which is a lemniscate.

8 Use the formula in Exercise 71 to show that the lemnis-
cate in part (a) is the curve traced by a point that moves
= such a way that the product of its distances from the
polar points (a, 0) and (a, 7) is a°.

wertical and horizontal asymptotes of polar curves
mmes be detected by investigating the behavior of
= and y =rsinf as @ varies. This idea is used in

CHECK ANSWERS 10.2

77

-

78 -

B 79.

£ 80.

81.

horizontal asymptote at y = 1 by showing that y— 1 and
x— +o as # — 0. Confirm this result by generating the
spiral with a graphing utility.

Show that the spiral r = 1/6* does not have any horizontal
asymptotes.

Prove that a rose with an even number of petals is traced out

exactly once as £ varies over the interval 0 <@ < 2wand a

rose with an odd number of petals is traced out exactly once

as @ varies over the interval 0 < 8 < 7.

(a) Use a graphing utility to confirm that the graph of
r=2—sin(@/2) (0 < # < 4m) is symmetric about the
X-axis.

(b) Show that replacing # by —# in the polar equation
r = 2 — sin(#/2) does not produce an equivalent equa-
tion. Why does this not contradict the symmetry dem-
onstrated in part (a)?

Writing Use a graphing utility to investigate how the fam-

ily of polar curves r = 1 + a cos n# is affected by changing

the values of @ and n, where a is a positive real number and

n is a positive integer. Write a brief paragraph to explain

your conclusions.

Writing Why do you think the adjective “polar” was chosen

in the name “polar coordinates™?

8: rsiné (b) x* + y%; y/x
='3) (b) (—2,47/3)

2. () (2,2+/3) (b) (+v/3,-1) (©) (=3, -3v3) (@ (-2v2, -2v2)
4. (a) spiral (b) limagon (c) rose (d) none of these (e) line (f) cardioid (g) circle

JANGENT LINES, ARC LENGTH, AND AREA FOR POLAR CURVES

by polar curves.

In this section we will derive the formulas required to find slopes, tangent lines, and arc
lengths of polar curves. We will then show how to find areas of regions that are bounded

yields

B TANGENT LINES TO POLAR CURVES
Our first objective in this section is to find a method for obtaining slopes of tangent lines to
polar curves of the form r = f(f) in which r is a differentiable function of . We showed
in the last section that a curve of this form can be expressed parametrically in terms of the
parameter & by substituting f(6) for r.in the equations x = r cos# and y = rsin#. This

x = f(f)cosh,

y = f(f)sin@
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w2

r=1-cosd | r=1+cosf

,_,
A
—

A Figure 10.3.13

B INTERSECTIONS OF POLAR GRAPHS

In the last example we found the intersections of the cardioid and circle by
expressions for r and solving for . However, because a point can be represented =
ways in polar coordinates, this procedure will not always produce all of the i
For example, the cardioids

r=1—cos# and r=1+cosh |

intersect at three points: the pole, the point (1, 7#/2), and the point (1, 3720
10.3.13). Equating the right-hand sides of the equations in (7) yields | — cosf =~

orcost =0, so
=’5’+;m, k=0,%1,42, ...

| The orbits intersect, but the
| satellites do not collide.

A Figure 10.3.14

Substituting any of these values in (7) yields » = 1, so that we have found only
points of intersection, (1, a/2) and (1, 37/2); the pole has been missed. Thas
occurs because the two cardioids pass through the pole at different values of &
r =1 —cos@ passes through the pole at # = 0, and the cardioid r = | + =%
through the pole at 6 = .

The situation with the cardioids is analogous to two satellites circling the Ea=v
secting orbits (Figure 10.3.14). The satellites will not collide unless they reacs
point at the same time. In general, when looking for intersections of polar
good idea to graph the curves to determine how many intersections there shouls &

¢ QUICK CHECK EXERCISES 103 (See page 729 for answers)

1. (a) To obtain dy/dx directly from the polar equation
r = f(#), we can use the formula

dy dy/de B
dx — dx/d®
(b) Use the formula in part (a) to find dy/dx directly from
the polar equation r = cscé.

2. (a) What conditions on f(#p) and f'(6y) guarantee that the
line # = # is tangent to the polar curve r = f(#) at the
origin?

EXERCISE SET 10.3  © Graphing utility  [E] cas

(b) What are the values of 6 in [0, 2] at whass
6 =y are tangent at the origin to the £
r = cos 287
3. (a) To find the arc length L of the polar curve
( < 6 < B), we can use the formula L =
(b) Thepolarcurver = sec@ (0 < 0 < n/4)
Tlesakisten by
4. The area of the region enclosed by a nonnegative
r= f(6) (e <8 < B) and the lines # = & anf
given by the definite integral
5. Find the area of the circle r = a by integratior

1-6 Find the slope of the tangent line to the polar curve for the
given value of . 1

1. r =2sin@; 8 =n/6
Lr=1/8;8=2
5. r=sin39; @ = a/4

2. r=1+cosf; 6 =mnf2
4. r=asec28; 8 =n/6
6. r=4—-3sinf; f=m

7-8 Calculate the slopes of the tangent lines indicated in the
accompanying figures.

7. r=2+42sin@

8. r=1-2sin®

2 w2

: 0
A Figure Ex-7 A Figure Ex-8

9-10 Find polar coordinates of all points at whics
curve has a horizontal or a vertical tangent line. 1

9. r=a(l 4+ cos#) 10. r = asin#
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2/Use a graphing utility to make a conjecture about the
wer of points on the polar curve at which there is a horizontal
w==t line, and confirm your conjecture by finding appropriate
matives.

» = sinf cos2 6 12. r =1—2sinf

« & Sketch the polar curve and find polar equations of the
g==t lines to the curve at the pole.

14. r = 4sin@
17. r =1 —2cosf

15. r = 4+/cos 28
18. r =26

r=2cos38
i Sl_l‘lzﬂ

22 Use Formula (3) to calculate the arc length of the polar
Fes

Ihe entire circle r = a

IBe entire circle r = 2a cos @

e entire cardioid r = a(l — cos#)
s =" fromf =0tof =2

2 Show that the arc length of one petal of the rose
r = cosn@ is given by

7/ (2n)
zf J1+ (2 — Dsin®né do
0

{5 Use the numerical integration capability of a calculat-
ing utility to approximate the arc length of one petal of
the four-petal rose r = cos 26,

per Use the numerical integration capability of a calculating
utility to approximate the arc length of one petal of the
n-petal rose r = cosnf for n =2,3,4,...,20; then
make a conjecture about the limit of these arc lengths
as n— +oo.
Sketch the spiral r = ¢~%/% (0 < 8 < +x).
Find an improper integral for the total arc length of the
spiral.

==+ Show that the integral converges and find the total arc
length of the spiral.

E down, but do not evaluate, an integral for the area of
shaded region.

‘/_\t (b) h (c)
N

r=1—-cosf r=2cosf r=sin28
r=1-sinf r=cos28

the area of the shaded region in Exercise 25(d).

27. In each part, find the area of the circle by integration.
(a) r =2asinf (b) r = 2acos#

28. (a) Show thatr = 2sin# + 2cos @ is a circle.
(b) Find the area of the circle using a geometric formula
and then by integration.

29-34 Find the area of the region described. ™
29. The region that is enclosed by the cardioid r = 2 + 2sin@.

30. The region in the first quadrant within the cardioid
r =14 cosd.

31. The region enclosed by the rose r = 4 cos 36.
32. The region enclosed by the rose r = 2 sin 26.

33. The region enclosed by the inner loop of the limagon
r =1+ 2cosf. [Hint: r < 0 over the interval of
integration. ]

34. The region swept out by a radial line from the pole to the
curve r = 2/ as 8 varies over the interval 1 <8 < 3.

35-38 Find the area of the shaded region.

35. 36.
|—r= cos 26 I !—r_;i+cosﬂ .i
=2cosf | r=cosf |
_I S
38.
[T—— | r=1+cos8 |
| r=4\3sino r=3cosb

39-46 Find the area of the region described.

39. The region inside the circle r = 3 sin ¢ and outside the car-
dioidr = 1+ sin 8.

40. The region outside the cardioid r = 2 — 2cos# and inside
the circle r = 4.

41. The region inside the cardioid r = 2 + 2cos @ and outside
the circle r = 3.

42. The region that is common to the circles r = 2cos6 and
r=2sinf.

43. The region between the loops of the limagon r = % + cosf.

44, The region inside the cardioid r = 2 + 2cos@ and to the
right of the line r cos @ = 5

45. The region inside the circle r = 2 and to the right of the line
= \/E secf.

46. The region inside the rose r = 2a cos 28 and outside the
circle r = a+/2.
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47-50 True-False Determine whether the statement is true or
false. Explain your answer. ™

47. The x-axis is tangent to the polar curve r = cos(6/2) at
8= 3r.

48. The arc length of the polar curve r = /6 for 0 < 8 < n/2

is given by
w2 \/71
Jo= 1+ —
fu + 20 do

49. The area of a sector with central angle 6 taken from a circle
of radius r is 8r2.

50. The expression

1 nl4 5
= (1 — v2cos8)2 do
2 —xf4

computes the area enclosed by the inner loop of the limagon
r=1-— -./icosﬁ.

FOCUS ON CONCEPTS

51. (a) Find the error: The area that is inside the lemniscate
rt =a’cos20 is

pr 4 2
A =f %rzdﬁ =f %azcosi’ﬁ'a‘ﬂ
0 0

b
= }az sin 29] = |
0

(b) Find the correct area.
(c) Find the area inside the lemniscate »2 = 4 cos 26
and outside the circle r = +/2.

52. Find the area inside the curve r? = sin 26.

53. Aradial line is drawn from the origin to the spiral r = a@
(a = 0 and # = 0). Find the area swept out during the
second revolution of the radial line that was not swept
out during the first revolution.

54. As illustrated in the accompanying figure, suppose that
a rod with one end fixed at the pole of a polar coor-
dinate system rotates counterclockwise at the constant
rate of 1 rad/s. At time + = 0 a bug on the rod is 10 mm
from the pole and is moving outward along the rod at
the constant speed of 2 mm/s.

(a) Find an equation of the form r = f(#) for the path
of motion of the bug, assuming that & = 0 when
=0

(b) Find the distance the bug travels along the path in
part (a) during the first 5 s. Round your answer to
the nearest tenth of a millimeter.

2|5

Yr=5%g

A Figere

[€] 55. (a) Show that the Folium of Descartes x* — 3z
can be expressed in polar coordinates as
3sinf cosf

P = e——
cos? @ + sin” 6

(b) Use a CAS to show that the area inside of
(Figure 3.1.3a).

[€] 56. (a) What is the area that is enclosed by one
r = acosnf if n is an even integer?
(b) What is the area that is enclosed by one
r = acosnf if n is an odd integer?
(¢) Use a CAS to show that the total area
rose r = acosnf is wa’/2 if the numbes
even. [Hint: See Exercise 78 of Section |
(d) Use a CAS to show that the total area
rose r =-acosnf is ma?/4 if the numbes
odd.

One of the most famous problems in Greek
“squaring the circle,” that is, using a straigh
pass to construct a square whose area is eque’
given circle. It was proved in the ninetesnt®
no such construction is possible. However.
shaded areas in the accompanying figure are
“squaring the crescent.”

57.

2

« Figure Ex-57

i s8.
H 59.

Use a graphing utility to generate the polar
equation r = cos 38 + 2, and find the area
Use a graphing utility to generate the graph o
r = 2cos@ sin’ @, and find the area of the
60. Use Formula (9) of Section 10.1 to derive
formula for polar curves, Formula (3).
61. As illustrated in the accompanying figure, k=
point on the polar curve r = f(#), let ¥ be
counterclockwise angle from the extended
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tline at P, and let ¢ be the angle of inclination of the
t line. Derive the formula

g
¥ = griae
pw substituting tan ¢ for dy/dx in Formula (2) and applying
e migonometric identity

tan ¢ — tan @

g 1 + tan ¢ tan @

4 Figure Ex-61

t Lse the formula for ¥ obtained in Exercise 61. ®

Use the trigonometric identity
(2] 1 —cos@
| T 2~ " sind
2o show that if (r, #) is a point on the cardioid

r=1-cos# (0<8 < 2m)

then ¢ = 8/2.

Sketch the cardioid and show the angle ¢ at the points
where the cardioid crosses the y-axis.

Find the angle yr at the points where the cardioid crosses
the y-axis.

that for a logarithmic spiral r = ae®, the angle from
=adial line to the tangent line is constant along the spiral
the accompanying figure). [Note: For this reason, log-
ic spirals are sometimes called equiangular spirals.]

« Figure Ex-63

= the discussion associated with Exercises 75-80 of
Section 10.1, formulas were given for the area of the

LK CHECK ANSWERS 10.3

surface of revolution that is generated by revolving a
parametric curve about the x-axis or y-axis. Use those
formulas to derive the following formulas for the areas
of the surfaces of revolution that are generated by re-
volving the portion of the polar curve r = f(#) from
8 = « to @ = B about the polar axis and about the line
8 =n/2:

A . 5 dr\? e —
S=L 2nr sind, | r +(E) de | About 6 = 0

A f dr\? ——
S=f 2arcosf r=+(5) de | About 6 = /2 |

(b) State conditions under which these formulas hold.

65-68 Sketch the surface, and use the formulas in Exercise 64
to find the surface area. ™

65. The surface generated by revolving the circle r = cosé
about the line 6 = /2.
o

The surface generated by revolving the spiral r = ¢

(0 < 8 < 7/2) about the line 8 = 7/2.

67. The “apple” generated by revolving the upper half of the
cardioid r = 1 — cos@ (0 < @ < m) about the polar axis.

68. The sphere of radius a generated by revolving the semi-
circle r = a in the upper half-plane about the polar axis.

69. Writing

(a) Show that if 0 <8, <8 < and if r| and r; are
positive, then the area A of a triangle with vertices
(0,0, (r1, 1), and (r2. 62) is

A= %r]rz sin(f; — @)

66

-

(b) Use the formula obtained in part (a) to describe an
approach to answer Area Problem 10.3.3 that uses an
approximation of the region R by triangles instead of
circular wedges. Reconcile your approach with For-
mula (6).

70. Writing In order to find the area of a region bounded by
two polar curves it is often necessary to determine their
points of intersection. Give an example to illustrate that
the points of intersection of curves r = f(f) and r = g(6)
may not coincide with solutions to f(#) = g(#). Discuss
some strategies for determining intersection points of polar
curves and provide examples to illustrate your strategies.

d
ra:ns6'+sin9—r

sin ¢ + cos a6

9 (1) 2 =0 2@ f6)=0, [E)£0 () b=
X

T R4 ‘—fi)zde (b) 1 4[31[ (Bllzdﬂ—fﬂ
. Y de 27 e

3 Sv In
T

B |

n
1rtde 5.f %azdﬁ'::rmz
0
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A Figure 10.4.32

synchronized radio signals from two widely spaced transmitters with known

ship’s electronic receiver measures the difference in reception times between the
and then uses that difference to compute the difference 2a between its distances
two transmitters. This information places the ship somewhere on the hyperbola

are at the transmitters and whose points have 2a as the difference in their di

the foci. By repeating the process with a second set of transmitters, the position
can be approximated as the intersection of two hyperbolas (Figure 10.4.32). (The
global positioning system (GPS) is based on the same principle.)

v QUICK CHECK EXERCISES 10.4  (See page 748 for answers.)

1. Identify the conic.

(a) The set of points in the plane, the sum of whose dis-
tances to two fixed points is a positive constant greater
than the distance between the fixed points is

(b) The set of points in the plane, the difference of whose
distances to two fixed points is a positive constant less
than the distance between the fixed points is

(c) The set of points in the plane that are equidistant fmm a
fixed line and a fixed point not on the line is ;

2. (a) The equation of the parabola with focus (p, 0) and di-
rectrixx =—pis________.

{(b) The equation of the parabola with focus (0, p) and di-
rectrix y = —p is

3. (a) Suppose that an ellipse has semimajor axis a and
semiminor axis b. Then for all points on the ellipse, the
sum of the distances to the foci is equal to

(b) The two standard equations of an ellipse with semi-
major axis a and semiminor axis b are ________ and

EXERCISE SET 10.4 Graphing Utility

(c) Suppose that an ellipse has semimajor axis
minor axis b, and foci (£¢, 0). Then ¢ may be
from a and b by the equationc =

4. (a) Suppose that ahyperbola has semifocal axis &
conjugate axis b. Then for all points on the
the difference of the distance to the farther
the distance to the closer focus is equal to

(b) The two standard equations of a hyperbola
focal axis a and semiconjugate axis b are

(c) Suppose that a hyperbola in standard position
focal axis @, semiconjugate axis b, and foc
Then ¢ may be obtained from a and b by the
¢ =___ The equations of the asy
hyperbolaarey =+ ________

FOCUS ON CONCEPTS

1. In parts (a)~(f), find the equation of the conic.

(@) , 47 (b)
—-_,..- 1 h Y
1 i x
4 N
1 ol
-3
2 ~~ -3-2-1 0 1 2 3

c ¥ () Ay
&) * il
2 2
1 4 1
X
0 ) - 1]
-1 7 -
T el B
-3 -3
A R R R 3-2-1 0 108
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e Find the focus and directrix for each parabola in
Exercise 1.

Find the foci of the ellipses in Exercise 1.

Find the foci and the equations of the asymptotes of
the hyperbolas in Exercise 1.

the parabola, and label the focus, vertex, and direc-

= 4x (b) x* = —8y

= —10x (b) x* =4y
w—DP==12x+4) b x—-12=2(y-1
©—6y—2x+1=0 (b) y=4x2+8x+5

\
£

the ellipse, and label the foci, vertices, and ends

axis. F

2 2

E oy 5 gtpamiy
— 4 — =1 b) 9x*+y-=9
%9 (b) ¥y

2 2

-GS . B B

= +3)°+4(y—572 =16
S+ ly+2r-1=0
S’ 44y’ —18x+24y+9=0
Sa° + 9y? + 20x — 54y = 56

Skerch the hyperbola, and label the vertices, foci, and

=

B T _ b) 9y —x2 =36
w9 BL2y =2

2 7

rF X

e b) 16x2 — 25v% = 400
. 25 L psd Y
=47 (x-2)7?

3 5
ix+ 1) -8(y-32=16
-4+ 2x+8y—-7=0
o’ — y? —32x — 6y =57

S an equation for the parabola that satisfies the given

Weriex (0, 0); focus (3,0).
Westex (0,0); directrix y = §.
Facus (6, 0); directrix x = —06.
Focus (1, 1); directrix y = —2.
» = 0; passes through (3, 2) and (2, —/2).
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18. Vertex (5, —3); axis parallel to the y-axis; passes through
(9, 5).

19-22 Find an equation for the ellipse that satisfies the given
conditions. =

19. (a) Endsof majoraxis (£3, 0); endsof minoraxis (0, £2).
(b) Length of minor axis 8; foci (0, £3).
20. (a) Foci (£1,0); b=+/2.
(b) ¢ =2+/3; a=4: centerat the origin; foci on a coor-
dinate axis (two answers).

21. (a) Ends of major axis (0, £6); passes through (=3, 2).
(b) Foci (=1, 1) and (—1, 3); minor axis of length 4.

22, (a) Center at (0, 0); major and minor axes along the coor-
dinate axes; passes through (3, 2) and (1, 6).
(b) Foci (2, 1) and (2, —3); major axis of length 6.

23-26 Find an equation for a hyperbola that satisfies the given
conditions. [Note: In some cases there may be more than one
hyperbola.] =

23. (a) Vertices (£2, 0); foci (£3, 0).
(b) Vertices (0, £2); asymptotes y = +2x.

24, (a) Asymptotes y = +3x; b=4.
(b) Foci (0, +5); asymptotes y = 32x.
25. (a) Asymptotes y = +3x; ¢ = 5.
(b) Foci (£3, 0); asymptotes y = +2x.
26. (a) Vertices (0, 6) and (6, 6); foci 10 units apart.
(b) Asymptotes y =x —2and y = —x + 4;
passes through the origin.

27-30 True-False Determine whether the statement is true or
false. Explain your answer, o

27. A hyperbola is the set of all points in the plane that are
equidistant from a fixed line and a fixed point not on the
line.

28. If an ellipse is not a circle, then the foci of an ellipse lie on
the major axis of the ellipse.

29. If a parabola has equation y*> = 4px, where p is a pos-
itive constant, then the perpendicular distance from the
parabola’s focus to its directrix is p.

30. The hyperbola (y*/a®) — x* = 1 has asympotes the lines
y==+x/a.

31. (a) As illustrated in the accompanying figure, a parabolic

arch spans a road 40 ft wide. How high is the arch if
a center section of the road 20 ft wide has a minimum
clearance of 12 ft?

(b) How high would the center be if the arch were the upper
half of an ellipse?

12}t 12ift

'| —20r— {'
| 40 ft 1 < Figure Ex-31
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32. (a) Find an equation for the parabolic arch with base b and

height &, shown in the accompanying figure.
(b) Find the area under the arch.

(6.1)

39. Find an equation of the ellipse traced by a point
so that the sum of its distances to (4, 1) and (4. 5

40. Find the equation of the hyperbola traced by 2
moves so that the difference between its distances
and (1, 1) is 1.

41. Show that an ellipse with semimajor axis a and
axis b has area A = mab.

(b,0) < Figure Ex-32

FOCUS ON CONCEPTS

33. Show that the vertex is the closest point on a parabola to 42. Show that if a plane is not parallel to the axis of

the focus. [Suggestion: Introduce a convenient coordinate
system and use Definition 10.4.1.]

. As illustrated in the accompanying figure, suppose that a

comet moves in a parabolic orbit with the Sun at its focus
and that the line from the Sun to the comet makes an angle
of 60° with the axis of the parabola when the comet is 40
million miles from the center of the Sun. Use the result in
Exercise 33 to determine how close the comet will come to

the center of the Sun.

circular cylinder, then the intersection of the
cylinder is an ellipse (possibly a circle). [Hint
the angle shown in the accompanying figure, :
coordinate axes as shown, and express x" and ¥
of x and y.]

35. For the parabolic reflector in the accompanying figure, how
far from the vertex should the light source be placed to pro-
duce a beam of parallel rays?
« Figure Ex-42
i
/;;/ l . As illustrated in the accompanying figure, 2
et 1ft—- needs to cut an elliptical hole in a sloped roo®
\x{ J' which a circular vent pipe of diameter D is tobe 3
?‘1‘%;;_;_ vertically. The carpenter wants to draw the
; —1 ft —-f the hole on the roof using a pencil, two tacks.
A Figure Ex-34 A Figure Ex-35 of string (as in Figure 10.4.35). The center

M 37.

38,

. (a) Show that the right and left branches of the hyperbola

23R ]
at b
can be represented parametrically as

x = acosht, y=bsinht (—oo <t < 4x)

x = —acoshr, y=bsinht (—> <t < +x)

(b) Use a graphing utility to generate both branches of the
hyperbola x> — y? = 1 on the same screen.

(a) Show that the right and left branches of the hyperbola
2y
al b
can be represented parametrically as
(—n/2 <t <m/2)
(—n/2 <t <7/2)
(b) Use a graphing utility to generate both branches of the
hyperbola x> — y* = 1 on the same screen.

x= asect, y=btant
x=—asect, y=btant

Find an equation of the parabola traced by a point that moves
so that its distance from (2, 4) is the same as its distance to
the x-axis.

ellipse is known, and common sense suggess
major axis must be perpendicular to the drip
roof. The carpenter needs to determine the

the string and the distance T between a tack and
ter point. The architect’s plans show that the p=
roof is p (pitch = rise over run; see the
figure). Find T and L in terms of D and p.

Sowurce: This exercise is based on an anticle by William H
appeared in the Mathematics Teacher, Feb, 1991, p. 148,

< Figure Ex-43

. As illustrated in the accompanying figure o=

page, suppose that two observers are stati
points Fy(c, 0) and F>(—¢,0) in an xy-c

tem. Suppose also that the sound of an expl
xy-plane is heard by the F; observer ¢ seconds




¢ is heard by the F; observer. Assuming that the speed of
sound is a constant v, show that the explosion occurred
somewhere on the hyperbola

2 2
i
2 1

V4 &2 — (22d)

¥

o

Fa(—c, 0)

s

Fyle, 0)

< Figure Ex-44

|
F. As illustrated in the accompanying figure, suppose that |
two transmitting stations are positioned 100 km apart at |
points Fy(50, 0) and F>(—50, 0) on a straight shoreline |
n an xy-coordinate system. Suppose also that a ship
is traveling parallel to the shoreline but 200 km at sea.
Find the coordinates of the ship if the stations transmit
a2 pulse simultaneously, but the pulse from station F is
received by the ship 100 microseconds sooner than the
pulse from station F>. [Hint: Use the formula obtained
in Exercise 44, assuming that the pulses travel at the
speed of light (299,792,458 m/s).]

LV

| 200 km

L Le:

< el

\Flc'sa. 0
4 Figure Ex-45

LR e
LY

F(=50,0)

& nuclear cooling tower is to have a height of i feet and
®e shape of the solid that is generated by revolving
e region R enclosed by the right branch of the hy-
perbola 1521x2 — 225y% = 342,225 and the lines x =0,
I=—h/2, and y = h/2 about the y-axis.
&' Find the volume of the tower.
W= Find the lateral surface area of the tower.

L2t R be the region that is above the x-axis and en-
iosed between the curve b2x? — a®y? = a®b” and the line
== a’+ b
& Sketch the solid generated by revolving R about the
x-axis, and find its volume.
B Sketch the solid generated by revolving R about the
v-axis, and find its volume.

Pove: The line tangent to the parabola x> = 4py at the
gesmt (xp, Yo) is Xox = 2p(y + yo)-
e: The line tangent to the ellipse
_1'2 yZ

—+==1
uz+b2

51.

52.
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at the point (xp, yo) has the equation

XX Yo _ |
a’ By
. Prove: The line tangent to the hyperbola
PR L
o B
at the point (xg, yo) has the equation
XX _ Yo _
sl Broeas

58

55.

56.

Use the results in Exercises 49 and 50 to show that if an el-
lipse and a hyperbola have the same foci, then at each point
of intersection their tangent lines are perpendicular.

Consider the second-degree equation
Ax’+Cy*+ Dx+Ey+F=0

where A and C are not both 0. Show by completing the

square:

(a) If AC > 0, then the equation represents an ellipse, a
circle, a point, or has no graph.

(b) If AC < 0. then the equation represents a hyperbola or
a pair of intersecting lines.

(c) If AC =0, then the equation represents a parabola, a
pair of parallel lines, or has no graph.

In each part, use the result in Exercise 52 to make a state-
ment about the graph of the equation, and then check your
conclusion by completing the square and identifying the
graph.

(@ x* =52 =2x—10y-9=0

(b) x* —3y* -6y —-3=0

(c) 4x* +8y* + 16x + 16y +20=0

d) 352 +y* + 12x +2y + 13 =0

(€) x* +8x+4+2y+14=0

(f) 5x2 +40x 4+2y+94 =0

. Derive the equation x> = 4py in Figure 10.4.6.

ST.

58

-

Derive the equation (x%/b%) + (v*/a*) = 1 given in Figure
10.4.14.

Derive the equation (x*/a®) — (¥*/b*) = 1 given in Figure
10.4.22.

Prove Theorem 10.4.4. [Hint: Choose coordinate axes so
that the parabola has the equation x> = 4 py. Show that the
tangent line at P (xg, yp) intersects the y-axis at Q(0, —vg)
and that the triangle whose three vertices are at P, Q, and
the focus is isosceles.]

Given two intersecting lines, let L5 be the line with the larger
angle of inclination ¢, and let L be the line with the smaller
angle of inclination ¢b,. We define the angle 8 between L,
and L; by 6 = ¢ — ¢. (See the accompanying figure on
the next page.)
(a) Prove: If L, and L, are not perpendicular, then
my — iy
1 4+ mym;
where L; and L, have slopes m and m,.
(b) Prove Theorem 10.4.5. [Hint: Introduce coordinates so
that the equation (x%/a®) 4+ (v*/b*) = 1 describes the
ellipse, and use part (a).]

tan@ =

{eonr)
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(c) Prove Theorem 10.4.6. [Hinr: Introduce coordinates so 59. Writing Suppose that you want to draw an
that the equation (x2/a”) — (y2/b*) = 1 describes the given values for the lengths of the major and
hyperbola, and use part (a).] using the method shown in Figure 10.4.3b. .

P the axes are drawn, explain how a compass can

kE, locate the positions for the tacks.
. 60. Writing List the forms for standard equations of
L ] . . :
2 ellipses, and hyperbolas, and write a summary of
p for sketching conic sections from their standass
, %

/ \ < Figure Ex-58

VQUICI( CHECK ANSWERS 10.4

1. (a) anellipse (b) ahyperbola (c) aparabola 2. (a) y* =4px (b) x* =4py
2 2 9 11glE5

@b =+L=Z+L=1@© /-1 ol & JaT T
@D S+L =l =l @VEF 4@ ® o=k o=@ Vs

m ROTATION OF AXES; SECOND-DEGREE EQUATIONS

In the preceding section we obtained equations of conic sections with axes
the coordinate axes. In this section we will study the equations of conics that &=
relative to the coordinate axes. This will lead us to investigate rotations of ¢

B QUADRATIC EQUATIONS IN x AND y
We saw in Examples 8 to 10 of the preceding section that equations of the for=

AX2+Cy*+ Dx+Ey+F=0

can represent conic sections. Equation (1) is a special case of the more general
Ax* + Bxy+Cy*+Dx+Ey+F=0

which, if A, B, and C are not all zero, is called a gquadratic equation in x
usually the case that the graph of any second-degree equation is a conic section.
then (2) reduces to (1) and the conic section has its axis or axes parallel to the
axes. However, if B # 0, then (2) contains a cross-product term Bxy, and
the conic section represented by the equation has its axis or axes “tilted”
coordinate axes. As an illustration, consider the ellipse with foci Fy (1, 2) and
and such that the sum of the distances from each point P(x, y) on the ellipse &
6 units. Expressing this condition as an equation, we obtain (Figure 10.5.1}

v =

Va -1+ -22+V/a+ 12+ (y+272=6
Squaring both sides, then isolating the remaining radical, then squaring aga=
ield
e 8x% =dxy + 5y* = 36

w

as the equation of the ellipse. This is of form (2) with A =8, B = —4. c=
A Figure 10.5.1 E ={,and F = —=36.



