MA 2310 Practice Test 1

1 Preliminaries

- 1. Know the trigonometry we discussed without a calculator (as on the quizzes).
- 2. Know how to graph basic functions such as: y = 3x 1, $y = 2x^2$, $y = x^3$, $y = \sqrt{x}$, $y = \sin(x)$, $y = \frac{1}{x}$, $y = \frac{1}{x^2}$, $y = e^x$, $y = \ln(x)$, $y = x^{0.57} x^2 + y^2 = 4$ and $y = \cos(x)$.
- 3. Know how to identify a functions domain.

2 Limits

- 1. Compute the following limits and show your work.
 - (a) $\lim_{x \to 3}$ (b) $\lim_{x \to 2} \frac{|x-2|}{(x-2)^2}$ (c) $\lim_{x \to 2} \frac{x^2 - 8}{|x - 2|}$ (d) $\lim_{x \to 2} \frac{1}{|x-2|}$ (e) $\lim_{x \to 2} \frac{1}{x-2}$ (f) $\lim_{x \to \infty} \frac{9x^3 - 1}{7x^5 + 5}$ (g) $\lim_{x \to \infty} \frac{9x^5 - 1}{7x^3 + 5}$ (h) $\lim_{x \to \infty} \frac{9x^5 - 1}{7x^5 + 5}$ (i) $\lim_{x \to \infty} e^{-x}$ (j) $\lim_{x \to \infty} \ln(x)$ 7(k) $\lim_{x \to \infty} \frac{t}{\ln(x)}$ (1) $\lim_{x \to -\infty} \frac{9x^3 - 1}{7x^5 + 5}$ (m) $\lim_{x \to -\infty} \frac{9x^5 - 1}{7x^3 + 5}$ (n) $\lim_{x \to -\infty} \frac{9x^5 - 1}{7x^5 + 5}$ (o) $\lim_{x \to -\infty} e^{-x}$ (p) $\lim_{x \to -\infty} \ln(x)$

(q)
$$\lim_{x \to 0} \frac{\sin(2x^2)}{x^2}$$

(r)
$$\lim_{x \to 0} \frac{\cos(3x)}{x^2}$$

(s)
$$\lim_{x \to 0} \frac{\tan(3x)}{3x}$$

2. For the following functions compute the horizontal and vertical aymptotes.

(a)
$$f(x) = \ln(x)$$

(b) $f(x) = \frac{1}{x}$
(c) $f(x) = \frac{x^2 - 1}{x + 1}$
(d) $f(x) = \frac{x^2 + 1}{x + 1}$
(e) $f(x) = \frac{x^2 - 1}{x^3 + 1}$ Hint $x^3 + 1 = (x + 1)(\dots$
(f) $f(x) = \frac{\sin(x)}{x}$

3. Determine if the function can be made continuous at the point x_0 . And if it can find the value c so that the function is continuous at x_0 .

(a)
$$f(x) = \begin{cases} \frac{\sin(x)}{x} & : x \neq 0 \\ c & : x = 0 \end{cases}$$
 where $x_0 = 0$.
(b) $f(x) = \begin{cases} \frac{x^2 - 1}{x + 1} & : x \neq -1 \\ c & : x = -1 \end{cases}$ where $x_0 = -1$.
(c) $f(x) = \begin{cases} \frac{x^2 - 4}{x + 1} & : x \neq -1 \\ c & : x = -1 \end{cases}$ where $x_0 = -1$.

3 Derivatives

- 1. Compute the following derivatives from the definition (you must use the definition).
 - (a) $f(x) = x^2$
 - (b) f(x) = 3x 2
 - (c) $f(x) = \frac{1}{x^2}$
 - (d) $f(x) = \sqrt{x}$
 - (e) $f(x) = \sin(x)$
 - (f) $f(x) = \begin{cases} \frac{x^2}{|x|} & : x \neq 0 \\ 0 & : x = 0 \end{cases}$ For this one only compute the derivative at the point x = 0.
- 2. Compute the following derivatives from the rules.
 - (a) $f(x) = x^2 1 \frac{1}{x}$

- (b) f(x) = 3x 2
- (c) $f(x) = x(3x^2 2)$ (d) $f(x) = \frac{\sqrt{x+1}}{x}$ (e) $f(x) = \sin(x)$

- 3. Find the equation of the tangent line at the indicated point x = a.
 - (a) $f(x) = -3x^2 + 2; a = 1$ (b) $f(x) = e^x$; a = 0
 - (c) $f(x) = e^x$; a = 1
 - (d) $f(x) = \sin(x); a = \pi/4$